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ABSTRACT 

For the first time, the circular pipeline as a means to significantly improve the throughput 

achieved in the search for bent functions is presented in this thesis.  Linear cryptanalysis 

attack is a threat to modern symmetric encryption systems.  A good defense is the use of 

a primitive based on Boolean functions having the highest nonlinearity possible—a bent 

function.  Bent functions are extremely rare and, therefore, difficult to find.  The 

implementation of a sieve on a field programmable gate array (FPGA) provides a high 

throughput (one function per clock) approach to searching for bent functions.  With a 

clock frequency of 100 MHz, throughput is 100,000,000 functions per second.  The 

circular pipeline as a way to achieve an even higher throughput is examined in this thesis.  

The theoretical maximum speedup is 2n, where n is the number of variables.  The exact 

achievable speedup has been unknown until now.  It is shown that a speedup of 55 is 

achieved at n = 6 with the design proposed in this thesis, which is 86% of the theoretical 

maximum. 
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EXECUTIVE SUMMARY 

Computer hardware architecture that speeds up the process of sieving through a pool of 

functions in search of a set of characteristics is presented in this thesis.  This 

architecture—the circular pipeline—is motivated by the search for the most nonlinear 

functions, known as bent functions, due to their usefulness in cryptographic applications.  

Bent functions provide for a defense against linear cryptanalysis attack.  A linear attack 

attempts to break the cipher key using a series of linear approximations for the key.  If 

successful, linear characteristics of the cipher key are exploited and the encryption is 

broken.  Bent functions are the least linear of all functions, making them most resistant to 

linear cryptanalysis attack. 

No analytic method is known to solve for bent functions, so large pools of 

candidate functions must be tested in order to find bent functions.  Bent functions are 

well defined and testing is straightforward.  However, the pools of candidate functions 

are so large that modern processing power is insufficient to exhaustively sieve through all 

possibilities.  Utilizing the parallelism afforded by reconfigurable computing on the SRC-

6, we achieved a speedup of over 60,000 times over a conventional processor at the 

Naval Postgraduate School.  The speedup achieved through parallel processing is 

improved through more efficient use of the parallel stages in the circular pipeline design.   

The conventional parallel design tests a single function per clock period.  To 

discover a bent function, it must be tested against all linear functions; therefore, the 

conventional design contains tests for all linear functions in parallel.  Each test consists of 

calculating the nonlinearity of the function under test and determining if it is a bent 

weight.  A bent weight is easily defined, and this part of the test is completed with two 

comparators, one for each of the two bent weights.  The nonlinearity is calculated with a 

bitwise exclusive-OR followed by a tree of adders that sum the resulting number of ones. 

The circular pipeline uses the same test modules used in the conventional design, 

but controls the flow of functions through the stages differently.  Rather than applying a 

single function to all stages simultaneously for testing, a distinct function is applied to 
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each test module, which is a stage of the circular pipeline.  If a bent weight is found, the 

function is advanced to the following stage, where another test is applied.  If a bent 

weight is not found, the function is discarded and the following stage accepts a new 

function from the function generator.  A function is continually passed to a subsequent 

stage as long as it passes tests.  If a function passes all tests, it is bent.  As soon as a 

function fails a single test, it is ejected, making room for a new function to be inserted to 

the pipeline and tested.  The result is more efficient use of the stages compared to the 

conventional design that performs simultaneous tests. 

Exactly what speedup is achievable is related directly to how much more 

efficiently the stages are utilized.  This efficiency, in turn, is directly related to how many 

stages functions tend to pass before failing (and being ejected from the pipeline).  Due to 

the rarity of bent functions, a function selected at random is more likely to fail an 

individual stage test than to pass.  Therefore, a great deal of efficiency, realized as 

throughput and ultimately speedup in total computation time, is gained with circular 

pipeline architecture.   

The circular pipeline requires additional logic to control the additional complexity 

of information flow through the stages.  Conventional speedup gained through 

parallelism is done so at a cost of doubling logic resources to double throughput.  

Therefore, the circular pipeline must have a better speedup to increased-logic ratio to be a 

technological improvement.    

Two primary design variations were developed and tested.  The first uses a 

reservoir queuing system to equitably distribute functions from a single function 

generator to all stages.  This design resulted in the greatest speedup, but logic resource 

consumption was too great to make it practical and could only be realized for very simple 

cases.  The second design implemented independent function generators, one for each 

stage, in order to eliminate the reservoir and providing an economical speedup.  A 

contribution of this thesis is to demonstrate a speedup to logic-resources-demand ratio of 

55:2.3.  Conventional parallelism yields a ratio of 1:1.  Furthermore, the trend of this 

ratio improves as complexity (the number of variables) of the circular pipeline increases. 
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I. INTRODUCTION 

A. LINEAR CRYPTANALYSIS 

Matsui [1] introduced the linear cryptanalysis method that succeeded in breaking 

the Data Encryption Standard (DES) block cipher.  DES was endorsed by the United 

States Bureau of Standards in 1976 and was ubiquitous in data encryption applications 

into the 2000s.  Matsui’s linear cryptanalysis method uses a series of linear 

approximations to decipher the target message.  The use of a highly nonlinear Boolean 

function in the encryption process is an effective defense against such a linear 

cryptanalysis attack.  Bent functions are highly nonlinear, and therefore useful in securely 

encrypting data. 

B. ENUMERATION OF BENT BOOLEAN FUNCTIONS 

While the precise definition of a bent function is straightforward, generating a 

bent function is not.  Currently, our approach to enumerating all n-variable bent functions 

is to exhaustively test a large pool of candidate n-variable functions using a sieve 

technique.  It has been demonstrated that a reconfigurable computer is an efficient way to 

test functions for bentness [2].  Until now, the architecture implemented on the SRC-6 at 

the Naval Postgraduate School tests a single function in truth table form simultaneously 

against all affine functions (or a subset thereof determined to be adequate).  The 

parallelism afforded by the reconfigurable computer to perform simultaneous tests 

provides a speedup factor of greater than 60,000 over a conventional processor [2]. 

C. SPEEDUP USING A CIRCULAR PIPELINE 

An inherent inefficiency with the current architecture is that a majority of the 

simultaneously performed tests reconfirm the same conclusion—that the function under 

test (FUT) is not bent.  This is a result of the rare nature of bent functions.  Each of the 

parallel tests is performed with a distance calculator that finds the distance between an 

affine function and the FUT.  All tests must be applied and passed to declare that a 



 2

function is bent.  That is, only one test needs to fail to determine a function is not bent.  

In the majority of cases, a function fails many tests.  We seek a method in which a 

function is subject to individual tests sequentially and is immediately ejected when it fails 

one test.  In this way, the test units are more efficiently used and the throughput is 

greater.  FUTs that pass are forwarded to subsequent distance calculator stages until they 

either fail their first test or pass all tests.  In this way, the information obtained from 

every test conducted is an essential operation.  No resources are wasted performing 

unnecessary tests [4].   

With the circular pipeline architecture, the maximum throughput possible is the 

number of stages S.  This is achieved when all functions fail.  The average will be less.  

This compares to a fixed throughput of 1 function per cycle with the conventional sieve 

architecture [4].   

Although the number of distance calculators (each belonging to a stage in the 

circular pipeline) remain constant, an increase in the pipeline’s control unit logic is 

expected to be required for a circular architecture.  This is due to the increase of possible 

routes for data to flow into and out of each pipeline stage.  Each stage of the conventional 

architecture always accepts a new function from the function generator and always passes 

its result along.  A circular pipeline stage may or may not accept a new function from the 

function generator, may or may not accept a function from the preceding stage, and may 

or may not pass a function it tests to the subsequent stage for further testing.   

Discovering the exact tradeoff between speedup and additional logic resource 

requirements of the circular pipeline architecture is a key area of interest. 

D. THESIS GOALS 

This thesis investigates the amount of speedup realizable with circular pipeline 

architecture implemented on the SRC-6.  Insight into this will guide further advances in 

bent function discovery using the sieve technique along with possibly providing useful 

data for high-speed calculation of other mathematical operations amenable to circular 

pipeline architecture.  
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E.  THESIS ORGANIZATION 

A basic overview of this thesis is presented in Chapter I.  Background information 

is presented in Chapter II.  The design proposed by this thesis to attain calculation 

speedup is detailed in Chapter III.  Implementation issues are addressed in Chapter IV.  

Results and analysis are presented in Chapter V.  The thesis summary and suggestions for 

future research in this area, specifically potential improvements to the proposed circular 

pipeline architecture, are presented in Chapter VI. 
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II. BENT FUNCTION DISCOVERY USING SIEVE  

A. FUNCTIONS 

1. Definitions 

a.  Boolean Functions 

A Boolean function f on n variables is a map from the n-dimensional 

vector space Vn = F2 to F2, the two-element field.  For a function f, let f0 = f(0,0,...,0), f1 = 

f(0,0,...,1), ..., and 
2 1nf
  = f(1,1,...,1).  TT = (f0 f1 ... 2 1nf


) is the truth table representation 

of f  [2]. 

b.  Linear Functions 

A linear function is the constant zero function or the exclusive-OR (XOR) 

of one or more variables [2].  There are 2n linear functions. 

c. Affine functions 

An affine function is a linear function or the complement of a linear 

function [2].  There are 2n+1 affine functions. 

d. Nonlinearity (NLf) 

The nonlinearity NLf of a function f is the minimum Hamming distance 

between f and an affine function, where the Hamming distance between two functions is 

the number of places where their truth table representations differ [2]. 

e. Bent Weight 

A bent weight is defined to be a nonlinearity of 
-1

2 12 2
nn  [1].  If a function 

is found to have a bent weight for a linear function, it will have also have a bent weight 
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for that linear function’s complement.  Therefore, it is sufficient to test only against all 

linear functions [2]. 

f. Bent Functions 

A bent function has a maximum nonlinearity among n-variable functions, 

where n is even.  A bent function will have bent weights for all 2n linear functions (and 

implicitly, all 2n+1 affine functions) [2]. 

It follows that a small portion of the 22
n

functions of an n-variable function are 

bent.  For n = 4, 896
65,536  = 1.3% of the 4-variable functions are bent.  This percentage 

decreases as n increases.  For example, n = 6 has a bent function ratio of 

5,425,430,528/
622 = 2.94x10−8% [3].  

g. Throughput (T) 

Throughput T is the rate at which functions are processed, given in units of 

functions per clock. 

B. PARALLEL SIEVE ARCHITECTURE 

An approach to discover all bent functions for n-variable functions is to 

enumerate all possible truth tables sequentially and apply each to all affine functions 

simultaneously.  As depicted in Figure 1, the FUT is bitwise XOR’d with each affine 

function, then ‘Ones Count’ logic determines the number of resulting ones (the Hamming 

distance), followed by a ‘Minimum’ circuit that finds the lowest value for all the ‘Ones 

Count’ inputs.  The output of ‘Minimum’ is the nonlinearly of the function.  Together, 

these modules are distance calculators, providing the distance between two inputs—an 

affine function and a FUT.  This process is pipelined to achieve a clock rate of 100MHz 

with throughput of one function per clock on the SRC-6.  Each module of the distance 

calculator will now be discussed in further detail. 
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Figure 1. Sieve Architecture for Bent Function Discovery. From [5] 

1. XOR Operation 

The bitwise XOR operation of bus width 2n is constructed of 2n/2 parallel 2-input 

XOR gate.  This is depicted in Figure 2. 

 

Figure 2. Bitwise XOR Architecture. From [5] 

2. Ones Count 

The Ones Count circuit is constructed as a tree beginning with 2
4

n

 4-input adders 

and ending with a 2n-wide adder with an n+1-wide output that is the Hamming distance 

to the affine function.  This design is illustrated by Figure 3. 
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Figure 3. Ones Count Architecture. From [5] 

3. Minimum 

The minimum circuitry is also constructed as a tree, with each building block 

receiving two n+1-wide inputs (the results from the Ones Counts modules) and producing 

the n+1-wide nonlinearity in binary.  This architecture is depicted in Figure 4.  

 

Figure 4. Minimum Module’s Architecture. From [5] 
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C. ADVANTAGES 

The principle advantage of this architecture is that a large number of operations 

are performed in parallel that would otherwise have to be executed in serial on a 

conventional CPU.  For example, a bitwise XOR operation is required for each affine 

function, which amounts to a total of 2n+1 operations, or more if the conventional 

processor cannot accommodate a 2n-wide bitwise XOR.  The ability to execute all of 

these operations in parallel amounts to a significant time savings over conventional 

processors for large n-variable functions [5]. 

D. DISADVANTAGES 

The principle disadvantage of this parallel sieve technique is that, for any one 

cycle, the distance calculators provide redundant information about each non-bent FUT, 

which typically fail many of the parallel tests. 
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III. CIRCULAR PIPELINE SIEVE ARCHITECTURE 

An improvement in computational time to discover all bent functions for a given 

n is sought by achieving greater utilization of the distance calculators.  The sieve consists 

of 2n stages that each computes the distance between f and one of the 2n linear functions.  

Then, it determines if its distance is a bent weight 2n-1 ± 2n/2-1.   

Persistence (Pi)  

Persistence is the number of stages a function fi is subjected to before removal 

from the circular pipeline.  Pi is equal to the number of passed tests for bentness (one per 

stage) plus one (for the stage that removes f).  P is the average persistence over all 

functions. 

If a function fi is found to have a bent weight, its persistence Pi is incremented and 

it is passed to the next stage.  If f is found not to have a bent weight, it is ejected from the 

circular pipeline and the following stage accepts a new function.  In the case that fi is 

bent, Pi will grow to 2n.  Then, fi is removed from pipeline and stored [4]. 

The speedup of the circular pipeline depends on the throughput, which will be      

1 ≤ T ≤ 2n.  The lower bound occurs if all functions in the pipeline are bent, while the 

upper bound occurs when none of the functions in the pipeline have a bent weight and are 

therefore ejected after one cycle [4].   

A. RESERVOIR 

For each cycle, 2n functions must be made available to the circular pipeline in 

case all previously tested functions were ejected.  The sieve procedure begins with a 

single function generator very similar to that used in the conventional design providing 

these sets of functions.  However, not all of these 2n functions will be accepted by the 

circular pipeline because some functions in the circular pipeline will persist, blocking a 

new input.  To achieve exhaustive testing, a reservoir for these unaccepted functions must 
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be provided so they may be inserted into the pipeline at a later time.  Further, a 

mechanism to provide the functions stored in the reservoir to the circular pipeline, vice a 

new set from the function generator, must be incorporated.   

The reservoir is shown in Figure 5.  Functions enter through a multiplexor (MUX) 

that is sourced with two complete sets of 2n functions one from the function generator 

and the other from the reservoir.  If a stage in the circular pipeline is available, a function 

fi provided by the MUX is inserted.  If not, the fi is routed to the lowest available of the 

2n+1 − 1 registers, beginning with L0.   

Figure 5 is an illustration of the reservoir for n = 2.  The circular shape at the top 

of Figure 5 is the circular pipeline with the 4 stages for n = 2.  L0 through Q2 are the 

2n+1−1 registers required to ensure registers are available for rejected functions in the 

worst-case scenario.  The blocks labeled I are the 2n functions applied by the MUX. 

 

Figure 5. Reservoir Architecture. 
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The purpose of the reservoir is to store functions rejected by the circular pipeline, 

so they can be reinserted later.  These temporarily stored functions must be queued such 

that they can be presented to the circular pipeline as a complete set of 2n functions.  A 

major problem associated with queuing the functions to form a complete set is assuring 

that no empty registers exist between occupied registers.   

The top registers 
0 though 2 1nQ


 are replicated for the purpose of illustration.  It must 

be known how many empty registers reside below each incoming function Ii (provided by 

the MUX).  Summing the number of L occupied registers with an adder chain is required 

when the L registers are not all filled.  The addition operation needed to sum all occupied 

L registers is special in that if a stage is found to be occupied, all stages below it are 

occupied as well.  Therefore, a thermometer-type adder, or thermo adder, is used to 

provide this sum. 

Analysis of all possible cases revealed that when the L registers are completely 

occupied, the same thermo adder simply needs to be applied to the Q registers.  This is 

because the Q registers will slide down to fill the P registers from the bottom up and the 

incoming functions I will fill in atop these. 

The sum produced by the thermo adder is the input to a chain of adders associated 

with the incoming I functions.  A 2n-bit signal inToPipe, from the circular pipeline, is 

used in the same fashion as the occupied bits are used with the registers.  An asserted 

inToPipei indicates that the pipeline stage Qi requires Ii on the next clock; hence, Ii will 

not be stored in the reservoir.  If inToPipei is low, Ii will be routed into the reservoir. The 

adder chain accounts for the presence of Ii in the reservoir, which is needed to determine 

proper routing of other incoming I functions above Ii.   

The lowest index I function rejected by the circular pipeline is routed to the 

lowest indexed available register.  The next lowest indexed I function rejected from the 

circular pipeline is stored in the register directly above where the lowest indexed I 

function is stored.  With this behavior, for each function I to be routed correctly, the 

number of occupied registers below is needed, to include any other lower indexed I 
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functions that are being routed to the reservoir on the same clock.  The adder chain, 

applied to the occupied bits of the registers and the inToPipe bits of I, provides this 

number and allows for proper routing. 

When the top L register, 
2 1nL


is filled, a select signal is asserted and the MUX 

applies the set of 2n L functions from the reservoir.  Functions in Q registers slide down 

to the similarly indexed L register, ensuring the reservoir is filled from the bottom up.  

When the MUX selects functions from the reservoir, the function generator must be 

inhibited, which is controlled by the same line used as input to the OR gate that feeds the 

MUX select.  When the function generator has completed generating all functions, a done 

signal is sent to the reservoir.  This signal also feeds the OR gate leading to the MUX 

select, which routes any remaining functions in the reservoir to the circular pipeline.    

Despite being auxiliary, the reservoir is the most complex part of the circular 

pipeline.  An estimate the growth rate of reservoir complexity as a function of n is given 

in Table 1.  The number of connection paths and individual wires required (connections 

multiplied by bus width) by the reservoir to accompany the circular pipeline for given n 

are listed in Table 1.  The minimum number of transfer paths occurs for I0, which has 2n 

possible paths.  There is no case for which I0 will be routed to any of the Q registers.  I1 

can be routed to any L register or Q0.  I2 could be routed to any L register, Q0 or Q1.  This 

pattern continues until reaching 2n
I , which could be transferred to any of the registers.  

This gives a maximum number of transfer paths of 2n+1 − 1. 

The total number of transfer paths is given by 

Max

Min

TransferPaths
+ 2n − 1.  The 2n 

− 1 term accounts for the paths for each Qi register to transfer to its corresponding Li 

register.  The total number of wires required is found by multiplying the total transfer 

paths by bus width of f, which is 2n.  Lastly, the growth rate column shows the growth 

factor of the total number of required wires with respect to the previous row.  Bearing in 

mind that this table omits odd n, we deduce that the complexity of the reservoir grows by 

approximately 8n.  The circular pipeline is expected to grow at a rate of approximately 

2n, which is the growth rate of the number of stages.  This indicates the reservoir 
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complexity will likely be a limiting factor as n increases and motivated an alternate 

approach that allows removal of the reservoir.  This is discussed in Section C.2.   

Table 1. Reservoir Complexity. 

n Stages 

Max 

Transfer 

Paths 

Minimum 

Transfer 

Paths 

Total 

Transfer 

Paths 

Bus 

Width 
Total Wires 

Growth 

Rate 

2 4 7 4 25 4 100 - 

4 16 31 16 391 16 6256 63 

6 64 127 64 6175 64 395200 63 

8 256 511 256 98431 256 25198336 64 

10 1024 2047 1024 1573375 1024 16111136000 64 

B. CIRCULAR PIPELINE 

Each stage of the circular pipeline is similar to the parallel nonlinearity computers 

of the conventional sieve architecture.  However, additional logic is required to handle 

the additional complexity of data flow.  For each stage, a control unit must determine if a 

function should be advanced to the next stage or ejected; additionally, whether or not a 

function is incoming from the preceding stage or a new incoming function should be 

accepted.   

To accomplish this, a 1-bit signal inToPipei indicates if the stage Qi is accepting 

the incoming function Ii from the MUX.  If not, Ii is stored in the reservoir.  The 2n-bit 

intToPipe vector is used by the reservoir queuing unit to properly route functions to 

registers in the reservoir.   

An n-bit persistence P token accompanies each function throughout its procession 

in the circular pipeline.  A test must be performed to detect when P ≥ 2n, at which time 

the FUT is determined to be bent, removed from the pipeline, and stored. 
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1. Data Flow and Control Logic Complexity Comparison 

The additional complexity required (which translates directly to logic (LUTs on 

the SRC-6) required for design realization) is best understood by comparing data flow 

through a traditional linear pipeline to the flow through a circular pipeline.  Figure 6 is a 

graphical depiction of the basic flow of information through a linear pipeline.  For bent 

function searches, this 4-stage pipeline applies to n = 2 and each stage is testing f against 

a distinct linear function for a bent weight.  If the function passes through all stages, 

never failing a test, it is declared bent.  Each stage has one input and one output and 

completes its calculation in one clock. The architecture to control information flow is 

simple, and throughput is fixed to one function per clock. 

 

Figure 6. Linear Pipeline Information Flow. 

Figure 7 is a depiction of the flow of information through a circular pipeline.  

Figure 7a is the initial adaptation of the linear architecture and Figure 7b is a modified 

version of 7a with the output of stage four wrapped around to be the input of stage one.  

From this illustration, it is immediately clear that greater complexity is required to control 

the flow of functions through the pipeline.  Each stage now has a choice between two 

inputs and two outputs, which requires controlling logic.  An increase in throughput T is 

the expected payoff. 
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(a)                 (b) 

Figure 7. Circular Pipeline Information Flow. 

The design for optimal T by enabling every stage to output a result is depicted in 

Figure 7.  With the application we are applying to the circular pipeline, we choose to 

simplify the design by allowing only one stage to output functions that are determined to 

be bent, as illustrated in Figure 8. 

 

Figure 8. Circular Pipeline Data with One Stage Output. 
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This simplifies the output interface by disallowing the case that 2n functions are 

found to be bent and sent as output on the same clock.  If such a case were allowed, as in 

Figure 7, the output bus would have to be 22n bits wide in order to simultaneously transfer 

2n words of 2n bits each.  The SRC-6 can support at least 16 output streams of 320 bits 

each [6].  Therefore, there is no restriction on output stages through at least n = 4. 

Nonetheless, the simpler design of a single output stage comes with the associated 

benefits of simpler logic.  With the simplification, illustrated by Figure 8, the output bus 

is 2n bits wide and the instances of logic required to check the value of P is reduced from 

2n to 1.  With this design, every stage has two inputs from which to choose and only one 

output (to the following stage), save for the one special stage that has an additional output 

for functions determined to be bent.  Additional ideas regarding this issue are presented 

in Chapter VI Further Research. 

C. FUNCTION GENERATOR 

1. With Reservoir 

The circular pipeline with reservoir architecture requires a function generator that 

provides 2n functions on each clock and can be inhibited.  This is an extension of the 

simple counter in the conventional architecture that provided one function and always 

incremented on each clock.  In the conventional architecture, a simple counter used as the 

function generator was produced with C-style statements implemented on the field 

programmable gate array (FPGA).  This is discussed in greater detail in the sections on 

Verilog and SRC-6 implementation.   

The function generator is also a simple counter when the circular pipeline is used 

with a reservoir.  On each clock, the function generator produces 2n functions, one for 

each stage of the pipeline.  The most significant n bits of each function fi are hardwired to 

i (in binary).  A 22
n n  bit counter is concatenated onto the least significant bits.  In this 

way, 2n distinct truth tables of functions, each 2n bits long, are formed by the function 

generator on each clock.  The counter is inhibited on any clock that the reservoir’s L 

registers are completely filled because in this case the reservoir provides the functions.  
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The counter holds its value until the next clock for which the L registers are not 

completely filled (most likely the very next clock), then resumes incrementing. 

A done signal accompanies the FPGA-based function generator.  After all 

possible functions have been cycled through, a done bit signals function generator 

completion.  This signal also asserts the select bit on the input MUX, causing any 

functions in the reservoir to be routed for insertion to the pipeline.  Additionally, the 

counter done signal initiates termination counter.   

The final countdown is 5 × 2n – 1 clocks.  This number of clocks is the worst-case 

for how long it could take to flush the reservoir and circular pipeline.  It occurs when all 

functions in the circular pipeline (i.e. when the function generator signals done and the 

reservoir is full with 2n+1 – 1 bent functions).  If this were to happen, it would take 2n 

clocks before the pipeline would accept any functions from the reservoir.  After these 2n 

clocks, one function per clock would be inserted to the pipeline, and each would persist 

2n clocks.  The last function from the reservoir is inserted after 2n+2 – 1 clocks and is 

determined bent after 2n clocks, for a total of 5 × 2n – 1 clocks.  When this number of 

clocks is reached, following the function generator signaling completion, the exhaustive 

test is declared complete and a done signal is asserted. 

Using a final countdown rather than testing for and generating signals to indicate 

the absence of FUTs in the pipeline is a tradeoff between circuit complexity and speed.  

The final countdown requires the test to continue running for the entire duration of the 

worst-case scenario, which is unlikely.  Additional logic could terminate the test as soon 

as all functions are removed from the pipeline saving many of the 5 × 2n – 1 clocks.  But, 

this is a very small percentage of the total number of clocks required for the test.  

Simplifying the circuit and adding a small number of clocks to the test operation was the 

favored choice. 

2. Without Reservoir 

Due to the complexity of the reservoir, an alternative design was constructed.  In 

this design, individual function generators exist for each stage.  The single function 

generator used in the conventional and circular pipeline with reservoir architectures is 
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replaced by an array of 2n independent function generators (IFGs). Both designs 

continuously produce 2n truth tables of functions.  Each IFGi has its n uppermost bits 

hardwired to its index (in binary), which range from 0 to 2n.  The remaining lower order 

bits of each IFG are an independent simple counter.  The counter is inhibited any time its 

associated stage receives a function passed from the preceding stage.  If a FUT in a 

preceding stage fails, no function is passed, a function from IFGi is inserted into its 

corresponding stage Si, and then IFGi is incremented.   

A disadvantage with this approach is the inefficiency resulting when IFGs 

complete their cycle and then remain idle until the last IFG completes.  Any Si is 

underutilized from the time IFGi completes until the last IFG completes.  This is because 

there is no function available for insertion when the Si is open; Si continues only to test 

functions passed from the preceding stage.   

The circular pipeline with reservoir does not have this inefficiency because 

functions are redistributed equitably to all stages until no functions remain.  It was 

postulated that the delta between IFGs’ completion times would not be significant, 

especially as n increases.  Due to the nature of bent functions, all stages are expected to 

have an equal probability of passing or rejecting a function selected at random.   

In this configuration, each IFG signals completion and its input to the stage is 

invalidated.  All 2n function generator’s done signals are AND’d with the 2n inToPipe 

signals, one from each stage.  Each asserted inToPipei signal indicates the FUT in stagei-1 

was found not to have a bent weight.  The output of this 2n+1-input AND function is 

thereby asserted when all function generators have completed and there is no function 

remaining in the circular pipeline with a bent weight.  This signals completion of the 

exhaustive test. 

D. PERSISTENCE 

Throughput is directly related to the average persistence, with the upper bound of 

2n if all functions were to persist for only one clock period, and a lower bound of 1 if all 

functions persist the 2n cycles required to determine a function is bent (theoretically, 

throughput could be a small fraction less than 1, which is explained below).   
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A function persists in the circular pipeline as long as the bitwise XOR with each 

linear function returns a bent weight of 2n-1 ± 2n/2-1.  The exact persistence of each 

function will depend on where in the circular pipeline it is inserted and the order with 

which the linear functions are placed amongst the stages.  Having no insight into 

advantages with any particular ordering of linear functions within stages, we give no 

attention to this issue.  We expect that the average persistence will depend on the 

percentage of bent weights contained within all possible functions.  A development of 

this fraction of bent weights is provided in [4]: 

For each value of n, there are 22
n

 n-variable functions, each of which has 

a distance value to 2n linear functions for a total of 22
n n  instances of a 

weight.  There are 2n linear functions, each of which is a distance 2n-1 ± 

2n/2-1 from 1 /2 1
2

2 2
n

n n 
   

 other functions, for a total of 1 /2 1
22 2 2

n
n

n n 
   

 

instances of a weight of 2n-1 ± 2n/2-1.  Thus, the fraction of instances of 
weight that are 2n-1 ± 2n/2-1 is 

1 /2 1 1 /2 1

2 2

2 22 2 2 2 2
.

2 2
n n

n n
n

n n n n

n n
A

   



                                    (1) 

The results of the algorithm for even n, 2 ≤ n ≤ 8, are included in Table 2.  Bn and 

Nn are the expected number of bent and non-bent weights for the given An.  The sum of Bn 

and Nn is 2n.  In practice, we cannot have fractional values.  So, for this development of 

an estimation of throughput and average persistence, we round Bn and Nn to the nearest 

integer, notated as [Bn] and [Nn].   

Table 2. Throughput and Average Persistence. From [4] 

n An Expected 
Bn 

Expected
Nn 

2n [Bn] [Nn] Calc..
Pavg

Calc. 
Tn

Tn 

Upper 
Exp. 
Pavg

E
x

2 0.500 2.0 2.0 4 2 2 1.40 2.86 4 2.50 1
4 0.244 3.9 12.1 16 4 12 1.31 12.2 16 1.65 9
6 0.121 7.8 56.2 64 8 56 1.14 56.1 64 - -
8 0.060 15.5 240.5 25 16 240 1.07 240. 256 - -
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To calculate Pavg for n = 4, we proceed as follows.  There are five possible 

sequences of weights for a function to encounter upon insertion to the circular pipeline.  

These are illustrated in Table 3. 

Table 3. Example Computation of Throughput for n = 4. From [4] 

Sequence of Weights B and N 
x is either B or N, such that 
there are 4 B’s and 12 N’s. 

Time in 
Pipeline
(clocks)

Number 
of Combi- 

nations 

Nxxx xxxx xxxx xxxx 1  15
4  

BNxx xxxx xxxx xxxx 2  14
3  

BBNx xxxx xxxx xxxx 3  13
2  

BBBN xxxx xxxx xxxx 4  12
1  

BBBB NNNN NNNN NNNN 5  11
0  

 

In Table 3, an ‘x’ represents either a bent weight B or non-bent weight N, the 

exact placement of each is unimportant, but must total the [Bn] and [Nn] values given in 

Table 2.  The first entry of Table 3 means that f is inserted into a stage for which it does 

not have a bent weight.  It is ejected from the pipeline, and its total time in the pipeline is 

one clock.  In the circular pipeline architecture, functions are always ejected immediately 

upon failing to test for a bent weight.  Of the 15 x’s following the initial N, four are bent 

weights and 11 are non-bent weights, which totals Bn = 4 and Nn = 12.  The number of 

combinations for four bent weights to occur amongst 11 non-bent weights is given by 

 15
4 , as shown in the Number of Combinations column of Table 3. 

The second entry of Table 3 illustrates the scenario that a bent weight is found in 

the first stage and is advanced to a second stage.  In the second stage, a non-bent weight 

is found and f is ejected from the pipeline.  For this case, f spends 2 clocks in the pipeline 

and there are  14
3 combinations for which this can occur.   
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The fifth and final row of Table 3 illustrates the scenario for which f tests for four 

consecutive bent weights in the first four stages it encounters.  Since only four bent 

weights reside within any 16 tests, the final 12 stages find non-bent weights.  There is 

 11
0 , which is simply one.  With this data we can compute the average number of clocks 

a function will persist in the pipeline for n = 4 as 

 
         
         

15 14 13 12 11
4 3 2 1 0

15 14 13 12 11
4 3 2 1 0

1 2 3 4 5
1.31avgP

   
 

   
 (2) 

  

It follows that throughput will be 

 
42 16

12.2.
1.31avg

T
P

    (3) 

Hence, in a 16-stage pipeline used to sieve for 4-variable bent weights, 

approximately 12.2 functions can be processed each clock.  Repeating the process for 

larger n, we note from Table 3 that T approaches the upper bound of throughput as n 

increases.  This is due to bent weights becoming increasingly rare as n increases. 

Butler [4] also ran a MATLAB simulation for n = 2 and n = 4 to find 

experimental values for Pavg and Tn.  These experimental results give lower T.  A goal of 

this thesis is to provide actual values of T, through n = 4, for the circular pipeline sieve 

run of the SRC-6.   

It is to be noted that the calculations and experimentally produced values 

developed in this section have assumed a bent function is removed from the pipeline 

upon reaching a persistence of 2n, Pbent = 2n.  However, the architecture implemented in 

this thesis is simplified by allowing bent functions to be extracted at only one stage.  

Therefore, a bent function can persist longer than 2n, depending on where it is inserted to 

the pipeline relative to the location of the bent-function extraction stage.  The persistence 

of a bent function fi,bent in this architecture is 2n ≤ Pi,bent ≤ 2n+1
 – 1.  Due to the random 

nature of function insertion location into the pipeline, the average of bent functions is 

 
12 2 1

2 .
n n

bentP
   (4) 
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The rare nature of bent functions minimizes the impact this additional persistence 

will have on the average T, especially as n increases, and is ignored in the development of 

Table 2. 

1. Worst-Case Scenarios 

For the circular pipeline applied as the bent function sieve, these worst-case 

scenarios are impossible.  However, they are included for completeness, as they should 

be considered in alternative applications of the circular pipeline. 

a. With Reservoir 

The worst-case scenario, which would cause the T to fall below 1, occurs 

when the pipeline processes only bent functions for the entire duration of the test.  For the 

first 2n – 1 clocks, all functions persist in the pipeline.  From clocks 2n to 2n+1 – 1, the 

initial 2n functions are removed and stored as bent functions.  The average persistence of 

this group of 2n functions given by Equation (4).  Following this initial group, T remains 

1 because all remaining functions are inserted into stage one and persist exactly 2n.   

Therefore, if the number of functions inserted into the circular pipeline is 22
n

, the 

average persistence of this worst-case scenario is 

2
2

1

2

(2 2 )

2

n
n n

i
n

i


 
.   

b. Without Reservoir 

Without a reservoir, we have an IFG associated with each stage.  The 

worst-case scenario begins the same as it does with a reservoir, with each stage receiving 

a bent function on the first clock.  After 2n clocks, new functions are inserted into stage 

one, also similar behavior to the with reservoir design, and persist for exactly 2n clocks, 

giving a persistence of 1.  However, IFG1 will complete at which time IFG2 will begin 

inserting its functions; it was previously blocked from inserting functions because S1 was 

passing a function on every clock.  The P of all functions produced by IFG2 will be the 

worst case of 2n+1 – 1.  This pattern continues around the circular pipeline; IFG3’s 
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functions persist 2n+1 – 2 clocks, IFG4’s functions persist 2n+1 – 3 clocks, and so forth.  

Therefore, the average persistence of this worst-case scenario is equal to Pbent, given in 

Equation (4). 

E. SUMMARY 

In this chapter, the circular pipeline design concept was outlined; associated data 

flow and conceptual issues were addressed.  The next chapter covers implementation of 

the circular pipeline concept in hardware. 
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IV. IMPLEMENTATION 

The circular pipeline and all associated components, such as the reservoir, were 

constructed in Verilog hardware description language and run on the SRC-6.  The process 

of accomplishing this is the topic of this chapter. 

A. VERILOG IMPLEMENTATION 

The circular pipeline architecture Verilog code is fully scalable to any n by 

modification of a single parameter.  Behavioral Verilog augmented with a handful of 

structural statements is the coding style used.  Most of the implementation of the design 

described in Chapter III into Verilog was straightforward and is not described in further 

detail.  An overview of the Verilog design’s components and highlights of some specific 

issues are discussed in this section.  The full Verilog code is in the Appendix. 

1. Reservoir 

The reservoir is the most complex component in the circular pipeline design, 

including the circular pipeline itself.  The three main components of the reservoir are 

priority encoders, adders, and registers. 

a. Priority Encoders 

2n+1 − 2 priority encoders are generated for the reservoir, one for each 

register except for the topmost 
2 2nQ


 resister.  The priority encoders for the 2n L registers 

each have 2n inputs, one for each of the T functions applied by the input MUX.  The 

number of inputs to the priority encoders for each Q register tapers off as 2n – i. 

Starting with L0 and working up, each register’s priority encoder produces 

the lowest-indexed function Ii that is being rejected from the circular pipeline and not 

routed to a lower-indexed register.  If there is no function to be routed to a given register, 

its priority encoder produces all zeros. 
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b. Adders 

Adders are used to produce the number of vacant registers below each I 

function.  This number is the routing information needed to place a rejected function Ii 

into the proper register, ensuring the reservoir is filled from the bottom up.  The 

assurance that the reservoir is filled from bottom up allows use of a thermo adder to 

produce the value of vacant registers.   

The 2n − 1 occupied-bits l associated with the L registers are applied to the 

thermo adder if the topmost L register 
2 1nL


is not occupied.  If 
2 1nL


 is completely filled, 

the occupied-bits of the Q registers q are applied to the thermo adder.  This is because, 

when 
2 1nL


 is occupied, all of the L registers are transferred out of the reservoir to the 

input MUX and, simultaneously, all of the Q registers are transferred index-to-index into 

the P registers on the next positive clock edge.  The number of occupied registers on the 

next positive clock edge is needed for proper routing of I functions.  Therefore, the l bits 

are applied to the thermo adder when 
2 1nL


 is not occupied, and the q bits are applied 

when 
2 1nL


 is occupied.   

The thermo adder’s Verilog code begins by inspecting the most significant 

occupied bit q or l and proceeding down the indices.  Upon finding an asserted occupied 

bit, it is known that all less significant bits will also be asserted, and a value of i + 1 is 

returned. 

The output of the thermo adder is fed into a chain of 2n − 1 adders, one for 

each I function above I0.  I0 receives its sum used for routing directly from the thermo 

adder. Each adder increases the input value by 1 if Ii−1 is being routed to the reservoir and 

provides this sum to Ii and the next adder in the chain.  The adder chain begins with the 

sum provided by the thermo adder and continues the running sum by adding the NOT of 

the bit inToPipei that corresponds to its function Ii.  This running sum indicates the 

number of functions that will remain in the reservoir below each Ii on the next positive 

clock edge.  
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c. Registers 

The 2n+1 − 1 registers required by the reservoir are assigned within an 

always@(posedge CLK) statement.  This statement instantiates a register and is used only 

once within the reservoir code for the purpose of creating the registers.  Every register 

receives its input through a MUX that selects between the output of its priority encoder or 

the register’s current value.  Each Li register has Qi as an additional input to its MUX for 

the cases that the Q registers slide down.  

2. Circular Pipeline 

The circular pipeline is implemented using several modules that carry out the 

operations described in the previous chapter.  A function was created to describe the 

behavior of a standard stage of the pipeline.  This function is called 2n – 1 times.  A 

modified version of the standard pipeline stage function that has the additional 

functionality of removing FUTs it determines to be bent (based on persistence) is 

instantiated once.  This gives a total of 2n stages.  The remainder of the module consists 

of control signals used to direct the flow of functions through the pipeline. 

B. VERILOG DESIGN DEVELOPMENT AND TESTING 

Project development was managed with Xilinx ISE 10.1.  Synplify Pro D-2009.12 

was used for synthesis and ModelSimSE 6.4 was used for simulation.  The general 

process was to build a section of code and synthesize.  The synthesis report was then used 

to correct any errors or warnings.  Then synthesis would be run again.  This process was 

iterated until synthesis produced an error- and warning-free circuit that appeared 

reasonable in the register transfer level (RTL) view.  Figure 9, 10, and 11 are examples of 

RTL schematics of a single circular pipeline stage for n = 4. 
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Figure 9. Synplify Pro RTL View of a Circular Pipeline Stage. n = 4. 

 

 

Figure 10. Synplify Pro RTL View of the Bent Weight Tester Within a Stage. n = 4. 

 

Figure 11. Synplify Pro RTL View of a One’s Counter Within a Bent Weight Tester.  
n = 4. 
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Next, a Verilog test bench was built to specifically test the section of code under 

development.  First, the testbench was run by ModelSim and the circuit under test’s 

behavior was modeled.  The resulting waveform was then analyzed to ensure proper 

behavior, corrections made, and the process iterated until the behavioral Verilog was 

verified to be correct.  Following the successful behavioral Verilog development, we 

mapped the Verilog design to the target FPGA and a post-MAP simulation model was 

returned by Xilinx ISE.  This post-MAP model, which includes logic delay, would then 

be simulated on ModelSim iteratively until successful functionality was verified.  Figure 

12 is a small section of a ModelSim post-map waveform of the circular pipeline returning 

three bent functions.  Post-map simulation models include logic delay, which is evident 

by the output being delayed approximately 6ns from the positive edge of the clock (in the 

figure, the clock is slowed from a runtime period of 10ns to a period of 16ns for 

troubleshooting purposes). 

 

Figure 12. ModelSim Post-map Simulation Result Excerpt. 

C. SRC-6 IMPLEMENTATION 

With a logic design successfully tested through post-map simulation, the final step 

was implementation on the SRC-6.  This involves coordinating the interaction between 

the CPU that controls the process at runtime and the logic design programmed onto the 

FPGA.  Four files are required in addition to the Verilog design: main.c, info, blk.v, and 

Makefile.  These files are included in the Appendix. 
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1. Macro Characteristics 

The input/output requirements of the Verilog coded circular pipeline, known as a 

macro in SRC-6 literature, must be characterized in order to choose an appropriate 

implementation.  The circular pipeline requires no input aside from the system clock.  It 

produces outputs that are held for one clock at unpredictable times throughout macro 

execution.  This is a marked difference from the conventional macro design, which was 

called, returned a value, and terminated on each clock (the function generator was located 

outside of the macro).  This highly regular behavior allowed for the use of the simplest of 

macro implementation—pure functional.   

With the characteristic that the macro returns values while continuing its run, vice 

returning a value at run termination, an external macro was also unfit for the circular 

pipeline implementation.  A stateful macro remained the only possibility among the 

known types, but uncertainty remained on its suitability.  Finally, on the advice of an 

SRC engineer, a streaming external macro was explored and found fit to the circular 

pipeline’s characteristics [7]. 

2. Streaming Output 

Streaming output allows for data to be returned from the circular pipeline and 

stored in On Board Memory (OBM) on any clock throughout the duration of the sieving 

process.  With the implemented circular pipeline returning a maximum of one function 

per clock, no bottleneck will occur so long as n < 7.  For n ≥ 7, the function width is 

greater than 64 bits, and so a bottleneck could occur over the 64-bit bus used to transfer 

data from the macro to OBM. 

While this was not a concern, in implementations installed for this thesis due to 

other limiting factors preventing n ≥ 7, the stream construct can handle such a case.  The 

SRC-6 stream construct includes a buffer that can be configured to handle a backlog of 

data outflow and stall the circular pipeline until the backlog is processed (e.g. transferred 

out). 
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3. CPU 

Top-level control is maintained by the CPU by the main.c file.  The main.c file 

allocates memory, calls a subroutine that leads to the macro, and prints results.   

4. Subroutine and Macro Call 

The subroutine is an interface between the main.c file and the macro.  It is written 

in C-style code, but implemented on the FPGA.  The subroutine sets up data types, calls 

the macro in a way that supports streaming, and passes data from OBM to the CPU.  In 

addition to the subroutine, the files info and blk.v configure the interface between the 

CPU and the macro.  They declare the input/output data types and sizes.   

5. Timing 

For n ≤ 5, all timing conditions are met with the circular pipeline, as describe to 

this point.  For n = 6, the mapper and place and route application are unable to meet the 

timing constraint along the critical path.  The SRC-6 uses a fixed clock of 100 MHz, 

which means delay along every path must be equal to or less than 10ns.   

The place and route application was unable to meet the 10ns timing constraint 

along all paths for n = 6.  However, the circular pipeline behaved as expected at runtime 

for the sample set of function used.  Thus, the critical paths identified by the place and 

route application are probably not the true critical paths of the circular pipeline.  Rather, 

they are theoretical worst-case paths that the place and route application was unable to 

eliminate as possibilities. 

6. FPGA Resources 

For n < 7, the resources of a single Xilinx Virtex2 XC2V6000 FPGA are 

sufficient to realize the circular pipeline.  For larger n, moderate changes to the SRC-6 

implementation strategy must be adapted.  Further details are included in Chapter VI.  

Exact resource usage data for n < 7 is included in Chapter V. 
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D. SUMMARY 

In this chapter, the development process for circular pipeline implementation onto 

the SRC-6 was covered.  The next chapter provides a results from the implemented 

circular pipeline. 
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V. RESULTS 

A. SPEEDUP 

Speedup results of the circular pipeline with IFC are summarized in Table 4.  The 

clocks columns give the total number of clocks that the implemented design required to 

complete an exhaustive test.  Tn is throughput, Upper Bound is the maximum possible, 

and Realized is what was achieved at runtime.  This data is from the implemented 

architecture running on the SRC-6, so it includes latency and overhead associated with 

SRC-6 process control.  For small n, this overhead is a large percentage of the clocks 

needed for test completion.  This is why the speedup for n ≤ 3 does not closely match the 

realized Tn.  For n > 3, the overhead is a very small percentage of total number of clocks 

required to complete the exhaustive test.  While the conventional design maintains a Tn>3 

of nearly unity, the increased Tn>3 becomes the speedup realized, rendering Tn>3 

equivalent to the speedup. 

Due to excessive computational time requirements, on the order of decades, 

complete results for n = 6 are impossible.  However a test set of 3.2 × 1014 (1.7 × 10−3% 

of all 
622 functions required for an exhaustive test) were run and the results are prorated 

to give a value for the complete enumeration.  Asterisks denote these values. 

T is calculated by dividing the number of functions processed by the number of 

clocks.  

 
22

n

nT
Clocks

  (5) 

For example, 
42

4

2
8.36

7,840
T    

 

Speedup is calculated by dividing the circular pipeline’s clocks by the 

conventional design’s clocks. 
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Table 4. Realized Speedup. 

Circular Pipeline Tn Conventional Tn Clocks 

n Upper 

Bound 
Realized 

Upper 

Bound 
Realized Conventional Circular 

Speedup 

2 4 0.296 1 0.078 205 54 3.8 

3 8 2.15 1 0.573 446 119 3.7 

4 16 8.36 1 0.997 65,727 7,840 8.4 

5 32 21.7 1 1 42.9 × 108  1.98× 108 21.7 

6 64 55* 1 1 184× 1017* 3.33× 1017* 55* 

*Estimate based on small sample size (number of functions tested << 22
n

) 

 

From Table 4, it is noted that a 55 times speedup over the conventional sieve 

design is achieved by the circular pipeline.  More importantly, there is a trend of 

increasing speedup as n increases.  Figure 13 is a graph of this trend juxtaposed with the 

upper bound of 2n; it is concluded that the speedup achieved by the circular pipeline is on 

the order of 2n
. 
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Figure 13. Realized Throughput. 

The throughput plotted in Figure 13 does not simply follow the upper bound at a 

reduced fraction, but approaches the upper bound as n increases.  This conclusion is best 

illustrated in Figure 14, which is normalized to 2n.   
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Figure 14. Throughput Normalized to 2n. 

B. RESOURCES 

A comparison of resources consumed between the circular pipeline and 

conventional design is provided in Table 5.  The three resource categories are given as 

percentages of the resources available on the Xilinx Virtex-II FPGA.  A slice is the basic 

building block of the FPGA.  Each of the 44,096 slices contain two D flip-flog registers 

and two 4-input Lookup Tables (LUTs), for a total of 88,192 each.  From Table 5, we 

conclude that LUTs are the limiting factor, as they are consumed at a higher rate than 

registers as n increases.  Therefore, the column Circular Pipeline Resource Multiple is the 

fraction given by the 4-input LUTs percentage consumed by the conventional design 

divided by the percentage consumed by the circular design.   

For n ≤ 4 the circular pipeline consumes fewer resources than the conventional 

design, as shown in Table 5.  This is an unexpected and not well understood result.  For n 

≤ 7, the additional resources consumed are less than a multiple of three over the 

conventional design.  The additional resource consumption of the circular pipeline is 

attributed to its control logic. 
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Table 5. Resources Consumed Summary. 

n Design 
Registers 

(%) 
Occupied Slices 

(%) 
4-input LUTs 

(%) 
Circular Pipeline 

Resource Multiple 

Conventional 4 3 3 
2 

Circular 1 1 3 
1 

Conventional 4 6 3 
3 

Circular 1 2 3 
1 

Conventional 5 7 4 
4 

Circular 3 5 3 
0.75 

Conventional 5 9 6 
5 

Circular 5 10 7 
1.17 

Conventional 7 17 13 
6 

Circular 23 25 30 
2.31 

Conventional 9 42 38 
7 

Circular 50 113 94 
2.47 

C. RESERVOIR TRADEOFF 

The use of a reservoir to queue and equitably distribute generated function among 

the stages provides the fastest computation.  However, the large demand on logic 

resources and associated delay rendered its implementation unrealizable for n > 3.  For    

n ≥ 4, the worst-case path delay renders a maximum frequency of less than 30 MHz.  

Attempts to pipeline the reservoir for the purpose of decreasing delay such that the 100 

MHz fixed clock of the SRC-6 could be used were successful.   

A comparison between the circular pipeline (without reservoir) and the circular 

pipeline with reservoir is provided in Table 6.  The number of clocks given for n ≥ 4 in 

Figure 7 are simulation results, not runtime data from the SRC-6 like all other numbers.  

Circuits for  n ≥ 4 are unrealizable, so simulation results are required to make speedup 

comparison.  In practice, if the circular pipeline with queue architecture is to be 

implemented, it would require more registers than what was reported for the unrealizable 

circuit that was synthesized.  However, even with double the registers, LUTs would still 
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be the limiting factor.  The number of LUTs is expected to remain constant, so the LUT 

comparison for n ≥ 4, which is data taken from the map report, is valid.  From Table 6 

and the maximum frequency for n ≥ 4 being less than 30 MHz, it is clear that the resource 

and timing demands of the reservoir cannot be met for large n and the simpler design is 

better suited for the task.  

Table 6. Circular Pipeline With and Without Reservoir (Res) Comparison. 

Clocks LUTs 
n 

Res w/o Res 
Speedup

Res w/o Res 

Resource 

Multiple 

2 45 54 1.20 3 3 1 

3 111 119 1.07 3 3 1 

4 7,259 7,815 1.08 13 3 4.33 

5    70 7 10 

 

The speedup produced by the reservoir is limited by the delta between completion 

times of the IFG.  From Figure 15, we conclude that the trend responsible for a 

significant portion of the maximum delta in completion times is due to using only one 

stage to remove bent functions.  An effect of using just one output stage is that a bent 

function will persist 2n ≤ Pbent ≤ 2n+1 – 1, depending into which stage it is inserted.  The 

stage are numbered from 1 to 16 in Figure 15, beginning with the stage that results in 

optimal Pbent and ending with worst case stage.  As n increases, this effect will be reduced 

as bent function become rarer.  Figure 15 is a plot of additional clocks required by each 

IFGi after the first IFG completed.  This value is given as a percentage of the total clocks 

required for the complete computation.  IFG16 terminates 1667 clocks after IFG1, which 

is 21.3% of the total clocks consumed. 
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Figure 15. Relative Completion Times of the IFG. 

D. SUMMARY 

The circular pipeline results in a speedup on the order of 2n over the conventional 

architecture used to exhaustively sieve for n-variable bent functions.  This speedup is 

achieved with a small fraction of logic resources compared to what is required to achieve 

a similar speedup with the conventional architecture.   

For n = 6, a speedup of 55 times is realized with a resources increase of 2.3 times.  

With the conventional design, a similar speedup would require a logic resources increase 

of 55 times.  This is because the only way to increase speedup with the fixed throughput 

of the conventional design is the duplicate the circuit and distribute functions to be tested 

equally between the duplicated circuits.  Speedup gained in this way is utilizing 

parallelism; doubling the instances of the circuit doubles the throughput.  This method of 

gaining speedup is amenable to the circular pipeline as well.  However, for n = 6, 

allocating triple the logic resources of a conventional design and replacing it with the 

circular pipeline will achieve a speedup of 55 times, vice three times.  

In this chapter, the throughput and resource consumption of implemented circular 

pipelines were presented and analyzed.  The next chapter concludes this thesis with 

recommendation for further research. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSION 

The circular pipeline architecture was implemented on the SRC-6 and 

demonstrated speedup on the order of 2n.  This speedup is realized with a logic resources 

increase of less than threefold for n < 7.  For n = 6, the ratio of speedup to logic resources 

increase over conventional architecture is 55:2.3.  Previous speedup gains were limited to 

increases in parallelism, which yield a 1:1 ratio of speedup to logic resources 

consumption increase.  The circular pipeline is an efficient means of increasing 

throughput in sieving applications. 

The reservoir developed for this thesis provides for the most efficient use of the 

circular pipeline by redistributing functions equitably.  However, the delta of run time 

between the IFGs is minor.  Therefore, the cost in complexity of the reservoir is not 

worth the speedup gained.  Yet, the reservoir could be essential if the circular pipeline is 

applied to other applications without same characteristics of the bent-function sieve 

providing for an even distribution of passed and rejected functions among the stages. 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

1. Multiple Output Stages 

The design presented in this thesis was assuming a hard limitation of a single 64-

bit output bus.  This motivated the design to restrict output from a single stage.  In order 

to run the circular pipeline on the SRC-6, techniques new to the Naval Postgraduate 

School were implemented.  Namely, the use of output streams was critical for the circular 

pipeline’s behavior.  While learning the use of output streams, it was realized that up to 

16 1024-bit wide output streams can be used.  The streams have a programmable buffer 

mechanism to take care of any bottleneck problems over the 64-bit output bus.  Using all 
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16 of these output streams (for n ≥ 4) should be a fairly simple improvement to 

implement.  This will result in more LUTs required for the additional stages tasked with 

examining the persistence token, but will improve throughput. 

2. Pipelined Reservoir 

As noted in Chapter IV, pipelining attempts with the circular pipeline with 

reservoir design failed.  However, it may be possible.  If the circular pipeline is to be 

applied to other applications, the reservoir will likely be more important, so pipelining it 

to reduce the worst-case path delay could be important.   

3. Multiple FPGAs 

For n ≥ 7, the circular pipeline design does not fit on a single Virtex-II FPGA.  

Multiple FPGAs must be used for these cases.  This is a nontrivial SRC-6 implementation 

issue that will also require modification to the Verilog code.  Solving this issue will likely 

have the most impact on the continuing bent-function research at the Naval Postgraduate 

School. 

4. Function Generators 

While this thesis focuses on speedup via hardware design, the most important 

speedups moving forward will be gained by reducing the number of functions that require 

testing.  This is the current focus of the continuing bent functions research at the Naval 

Postgraduate School.  Understanding special characteristics of bent functions and using 

this understanding to eliminate many of the functions included in an exhaustive test is the 

first step.  Building a function generator to produce only these functions is the second 

step.  For the circular pipeline produced in this thesis, it is important that the 2n IFG 

produce, on average, functions with the same total number of bent weights.   

This area of research requires in-depth mathematical understanding of bent 

functions as well as ingenuity with Verilog hardware design.  In return, it will likely 

produce the most significant results. 
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APPENDIX.  PROGRAMMING CODE 

A. VERILOG 

1. Circular Pipeline With Independent Function Generators 

//-------------------------------------------------------------------------------------------- 
// MY_CIRC_Pipe.v  -  An interface between the circular pipeline code that sets up streaming 
//                      with the SRC-6.  Based on the SRC example user_one_stream. 
// 
// Created:       August 7, 2010 
// Last Modified: September 3, 2010 
// Author:        Chris Johnson 
// 
// Notes:         DATA_OUT bus width is not parameterized; must be manually edited for n>5. 
//    modDATA_OUT must be edited for n>6. 
// 
// Sub-module calls: CircPipe.v 
// 
//-------------------------------------------------------------------------------------------- 
 
module MY_CIRC_PIPE ( 
        input     START, 
        input     CLK, 
        input     CLR, 
        output  reg    DONE, 
        output reg [31:0] DATA_OUT, 
        output  reg    VALID_OUT, 
        input     STALL_IN, 
        output  reg    TERM_OUT 
        ); 
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//parameter names for the states 
localparam IDLE       = 0; 
localparam ACTIVE     = 1; 
localparam STALLED    = 2; 
localparam FINISHING  = 3; 
 
reg  [1:0]  state; 
 
//wire connections from module call 
wire      modDONE; 
wire [63:0]  modDATA_OUT; 
wire      modVALID_OUT; 
wire      modTERM_OUT; 
 
always @* 

if (CLR) begin 
DATA_OUT  <= 0; 

            DONE      <= 0; 
            VALID_OUT <= 0; 
            TERM_OUT  <= 0; 
            state     <= 0; 
            end 

else 
            case (state) 
        IDLE:  if (START) begin 
           DATA_OUT  <= 0; 
                                 VALID_OUT <= 1; 
                                 state     <= ACTIVE; 
                             end 
                 

ACTIVE:     begin 
                               DATA_OUT <= modDATA_OUT; 

DONE <= modDONE; 
                                    VALID_OUT <= modVALID_OUT; 
                                    TERM_OUT <= modDONE;     
         state <= ACTIVE;  
                                  if (STALL_IN) begin 
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                                     VALID_OUT <= 0; 
                                     state     <= STALLED; 
                                     end 
                                 end 
                 

STALLED:     if (~STALL_IN) begin 
                               VALID_OUT <= 1; 
                               state     <= ACTIVE; 
                              end 
                 

FINISHING: begin 
                               state <= IDLE; 
                              end 
      

default:; 
endcase 

 
CircPipe u1(START,CLK,CLR,modDONE,modDATA_OUT,modVALID_OUT,STALL_IN); 
 
endmodule 
 
 
//-------------------------------------------------------------------------------------------- 
// CircPipe.v  -  The circular pipeline with independent function generators top level module. 
// 
// Created:       December 22, 2009 
// Author:  Jon T. Butler 
// Last Modified: September 3, 2010 
// Modified by:   Chris Johnson 
// 
// Notes:         Set parameter ‘n’ in this file.  It is passed to all sub-modules. 
// 
// Called by:  MY_CIRC_PIPE.v 
// 
// Sub-module calls:  countersMod.v 
//    Stage_TT.v 
// 
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//  This implements the circular pipeline.  For n-variable functions, there are N = 2**n stages, 
//    one for each linear function (we need only compare against the linear functions, since a  
//    function that has a bent distance from all linear function, has a bent distance away from 
//    all affine functions.  In this realization, only one stage has a bent function output - to 
//    simplify the circuit.  In this way, the circular pipeline serves as a buffer.  In this 
//    case a bent function will go through from N to 2N-1 stages. 
// 
//-------------------------------------------------------------------------------------------- 
// 
module CircPipe #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT. 
  ( input    START,  
   input    CLK, 
   input    CLR,   
   output reg    done,  //Asserted when all counters are done & pipe empty. 
   output [63:0] BENT, 
   output    valid_out, // Indicates a valid bent function is at BENT. 
   input    STALL_IN     
  ); 
 
wire [N-1:0] countDone;   // Set when counter has completed one cycle 
wire  [N-1:0]   LIN_FNC  [N-1:0]; 
wire [N-1:0]   REJECT;              // 0 bit indicates FNCS word not accepted.  
reg   temp; 
wire  [N-1:0] FNCS   [N-1:0]; // Each of the N words in counter FNCS has N bits. 
wire [n-1:0] FNCShob  [N-1:0];    // High order bits for the counter 
wire  [N-n-1:0]  counter  [N-1:0]; // N simple counters, extra bit to signal counter is done 
wire  [N-1:0]  to_stage; 
wire  [N-1:0]  stage_TT  [N-1:0]; 
wire  [n+1:0]  no_passes  [N-1:0]; 
 
genvar g; 
 
////////////////////////////////////////////////////////////////////////////////////// 
 
////CREATE INDEPENDENT FUNCTION GENERATORS (IFG)///////////////////// 
////Instantiate independent counters for function gens/////////////// 
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generate 
for (g=0; g<N; g=g+1) 
 begin: CountersGen 
  countersMod #(.n(n)) u4(START,CLK,CLR,STALL_IN,REJECT[g],counter[g],countDone[g]); 
 end 
endgenerate 
 
generate 
//Generate high order bits 
for (g=0; g<N; g=g+1) 
 begin: CounterHOB 
  assign FNCShob[g] = g; 
 end 
endgenerate 
//Generate counters 
generate 
for (g=0; g<N; g=g+1) 
 begin: CounterConcat 
  assign FNCS[g] = countDone[g] ? {N{1'b0}} : {FNCShob[g],counter[g]}; 
 end 
endgenerate 
////CREATE INDEPENDENT FUNCTION GENERATORS (IFG)///////////////////// 
 
////TERMINATION SIGNAL/////////////////////////////////////////////// 
always@* 
 if(countDone[N-1:0] == {N{1'b1}} && to_stage[N-1:0] == {N{1'b0}}) 
  done <= 1'b1; 
 else 
  done <= 1'b0; 
////TERMINATION SIGNAL/////////////////////////////////////////////// 
 
////LINEAR FUNCTIONS///////////////////////////////////////////////// 
generate 
for (g=0; g<N; g=g+1) 
 begin: LinearGen 
  assign LIN_FNC[g] = Linear(g); 
 end 
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endgenerate 
 
function [N-1:0] Linear(input [n-1:0] Y); 
 integer j; 
 integer k; 
 reg [n-1:0] X; 
  begin 
   for (j=0; j<N; j=j+1)  
    begin 
     X = j; 
     temp=0; 
     for (k=0; k<n; k=k+1) 
      begin 
      temp = temp ^ (X[k] & Y[k]); 
      end 
     Linear[N-1-X] = temp; 
    end 
  end 
endfunction 
////LINEAR FUNCTIONS/////////////////////////////////////////////////// 
 
////INSTANTIATE STAGES///////////////////////////////////////////////// 
generate   
for (g=0; g<N; g=g+1) 
 begin: Stages 
  if(g != 0) begin 
   stage #(.n(n)) u2(CLK, FNCS[g], REJECT[g], to_stage[g-1], to_stage[g], stage_TT[g-1], 
LIN_FNC[g], stage_TT[g], no_passes[g-1], no_passes[g], countDone[g]); 
   end 
  if(g == 0) begin  
   stage1 #(.n(n)) u3(CLK, FNCS[g], REJECT[0], to_stage[N-1], to_stage[0], stage_TT[N-1], 
LIN_FNC[0], stage_TT[0], no_passes[N-1], no_passes[0], countDone[g], BENT, valid_out); 
   end 
 end 
endgenerate 
////INSTANTIATE STAGES////////////////////////////////////////////////// 
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endmodule 
 
 
//-------------------------------------------------------------------------------------------- 
// countersMOD.v  -  Instantiates an inhabitable counter.  
// 
// Created:       August 11, 2010 
// Author:  Chris Johnson 
// Last Modified: September 3, 2010 
// 
// Notes:         This counter is the lower N-n-1 bits of the function gen in CountersMod.v. 
// 
// Called by:  CountersMod.v 
// 
// Sub-module calls:  None 
// 
//-------------------------------------------------------------------------------------------- 
// 
module countersMod #(parameter n = 6, parameter N=2**n)  

( input  START, 
   input  CLK, 
   input  CLR, 
   input  STALL_IN, 
   input  REJECT, 
   output reg [N-n-1:0] counter, 
   output reg countDone 
  ); 
reg [1:0] state = 0; 
 
always@(posedge CLK, posedge CLR) 
 if(CLR) begin 
  countDone <= 0; 
  counter <= 0; 
  state <= 0; 
  end 
 else 
 case(state) 
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  0: if (START) begin 
   counter <= 0; 
   state <= 1; 
   countDone <= 0; 
   end 
  1: begin //counter active 
    if(!REJECT && !STALL_IN) 
     counter <= counter + 1; 
    if(counter == 2**(N-n)-1) 
    begin 
     state <= 2; 
    end 
   end 
  2: begin //counter complete 
    countDone <= 1'b1; 
    counter <= {N{1'b0}}; 
    state <= 0; 
   end 
  default:; 
 endcase 
endmodule 
 
 
//-------------------------------------------------------------------------------------------- 
// stage.v  -  One (simple) stage only.  
// 
// Created:       December 22, 2009 
// Author:  Jon T. Butler 
// Last Modified: September 3, 2010 
// Modified by:   Chris Johnson 
// 
// Notes:         This does NOT put out a bent function. 
// 
// Called by:  CountersMod.v 
// 
// Sub-module calls:  test_for_bent.v 
// 
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//-------------------------------------------------------------------------------------------- 
// 
module stage #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT. 
   ( 

input          CLK,  
input   [N-1:0] FNCS_TT_in,  
output reg   REJECT,  
input     to_next_stage_in,  
output    pass,  
input   [N-1:0] stage_TT_in,  
input   [N-1:0] LIN_FNC,  
output reg [N-1:0] stage_TT_out,  
input   [n+1:0] no_passes_in,  
output reg [n+1:0] no_passes_out,  
input     countDone 
); 

 
test_for_bent #(.n(n)) u1(stage_TT_out,LIN_FNC,passU1); 
and stgs(pass,passU1,valid); //output pass signal if input is valid and TT passes 
 
always@* //Can prune this signal and just use to_next_stage_in 
 if(to_next_stage_in==1) 
  REJECT <= 1; 
 else 
  REJECT <= 0; 
 
always@(posedge CLK) 
 if(to_next_stage_in==1)      //Data to this stage comes from previous stage. 
  begin 
   stage_TT_out <= stage_TT_in; 
   valid <= 1; 
   no_passes_out <= no_passes_in + 1; 
  end   
 else          //Data to this stage comes in from input buffer. 
  begin 
   stage_TT_out <= FNCS_TT_in; 
   valid <= !countDone; //valid iff counter is not yet done 
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   no_passes_out <= 0; 
  end 
endmodule 
///////////////////////////////////   RESULTS ///////////////////////////////////// 
 
// n =               2         4        6       8        10        12 
// Freq.           181.8     144.8     73.0    53.4     42.9       35.9 
// #LUTs (%)       16(0%)    67(0%)   304(0%) 1251(1%) 5384(7%) 22179(32%) 
// Reg.Bits not i/o 4(0%)    23(0%)   77(0%)  283(0%)  1037(1%)  4352(6%) 
 
/////////////////////////////////////////////////////////////////////////////////////// 
 
 
//-------------------------------------------------------------------------------------------- 
// stage1.v  -  One stage only.  
// 
// Created:       December 22, 2009 
// Author:  Jon T. Butler 
// Last Modified: September 3, 2010 
// Modified by:   Chris Johnson 
// 
// Notes:         This does put out a bent function. 
// 
// Called by:  CountersMod.v 
// 
// Sub-module calls:  test_for_bent.v 
// 
//-------------------------------------------------------------------------------------------- 
// 
module stage1 #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in func’s TT. 

( 
input    CLK,  
input  [N-1:0] FNCS_TT_in, 
output reg   REJECT,  
input    to_next_stage_in,  
output reg   to_next_stage_out,  
input  [N-1:0] stage_TT_in,  
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input   [N-1:0]   LIN_FNC,  
output reg [N-1:0]   stage_TT_out,  
input   [n+1:0]   no_passes_in,  
output reg [n+1:0] no_passes_out,  
input    countDone,  
output reg [N-1:0]   BENT,  
output reg   valid_out 

); 
 
wire passU1; 
reg valid; 
 
test_for_bent #(.n(n)) u1(stage_TT_out,LIN_FNC,passU1); 
and stgs1(pass,passU1,valid); //output pass signal if input is valid and TT passes 
 
always@* to_next_stage_out <= (pass && (no_passes_out < N)); 
 
always@* 
 if(to_next_stage_in==1) 
   REJECT <= 1; 
 else 
   REJECT <= 0; 
 
always@(posedge CLK) 
 if(no_passes_out >= N) 
  begin 
   BENT <= stage_TT_out; 
   valid_out <= 1; 
  end 
 else 
  begin 
   BENT <= {N{1'b0}}; 
   valid_out <= 0; 
  end 
always@(posedge CLK) 
 if(to_next_stage_in==1)      //Data to this stage came from previous stage. 
  begin 
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   stage_TT_out <= stage_TT_in; 
   no_passes_out <= no_passes_in + 1; 
   valid <= 1; 
  end 
 else 
  begin 
   stage_TT_out <= FNCS_TT_in; 
   no_passes_out <= 0; 
   valid <= !countDone; //valid iff counter is not done 
  end 
endmodule 
////////////////////////////////////////////////////////////////////////////////////// 
 
//-------------------------------------------------------------------------------------------- 
// test_for_bent.v  -  Compares nonlinearity with the two possible bent weights for n.  
// 
// Created:       December 22, 2009 
// Author:  Jon T. Butler 
// Last Modified: September 3, 2010 
// Modified by:   Chris Johnson 
// 
// Notes:         Nonlinearity is returned from Ones_Count.v 
// 
// Called by:  stage.v 
//    stage1.v 
// 
// Sub-module calls:  Ones_Count.v 
// 
//-------------------------------------------------------------------------------------------- 
// 
module test_for_bent #(parameter n=6, parameter N=2**n) //n is number of variables. N is # of bits in TT.  

( 
input  [N-1:0] TT_in, 
input  [N-1:0] LIN_FNC, 
output reg   pass 

); 
// 
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parameter n = 6;                    // n = number of variables 
localparam N = 2**n;                // N = number of bits in truth table of an n-variable function. 
// 
reg    [N-1:0]  Ham_dist; 
wire   [n:0]    Count; 
 
always @* 
 begin 
  Ham_dist = TT_in ^ LIN_FNC; 
  if(Count == 2**(n-1) - 2**(n/2-1) || Count == 2**(n-1) + 2**(n/2-1)) 
   pass = 1; 
  else 
   pass = 0; 
 end 
// 
Ones_Count u2 (Ham_dist, Count); 
defparam u2.n = n; 
// 
endmodule 
 
///////////////////////////////////   RESULTS ///////////////////////////////////// 
 
// n =               2         4        6       8        10 
// Freq.           140.8     94.1     55.5     44.0     35.5   
// #LUTs (%)       5(0%)    46(0%)   219(0%)  949(1%)  3421(3%) 
 
/////////////////////////////////////////////////////////////////////////////////////// 
 
 
/////////////////////////////////////////////////////////////////////////////////////// 
module Ones_Count(TT, Count); 
//-------------------------------------------------------------------------------------------- 
// Ones_Count.v  -  A program to count the number of 1's in HD (Hamming Distance), producing that 
//                      count at Count.  This version of Ones_Count.v uses functions. 
// 
// Created:       August 18, 2007 
// Last Modified: December 26, 2009 



58 
 

// Author:        Jon T. Butler 
// 
// Inputs:        TT 
// Outputs:       Count 
// 
// Notes:         1. For n=2, this circuit builds a 4-input 3-output 1s count circuit that is intended to 
//                      make efficient use of the 4-input LUTs in the SRC's FPGA. 
// 
//-------------------------------------------------------------------------------------------- 
 
        parameter n = 10;  // At n=6, freq = 79.9 MHz. and it does not compile at n=7. 
        localparam N = 2**n; 
        output [n:0] Count; 
        input [N-1:0]  TT; 
        reg [n:0]   Count; // If Count is wire, ModelSim complains of "illegal reference to net 
                            // Count" below.  I believe it is because Count should be declared a 
                            // reg, per discussion on p. 178 of Palnitkar.  Unfortunately, this 
                            // is not a combinational logic circuit.   Using 'task' does not seem 
                            // to help.  Both input and output variables must be reg. 
 
        always @(TT) 
           begin: CHECK_n 
               case(n) 
                   2: Count <= Count2(TT); 
                   3: Count <= Count3(TT); 
                   4: Count <= Count4(TT); 
                   5: Count <= Count5(TT); 
                   6: Count <= Count6(TT); 
                   7: Count <= Count7(TT); 
                   8: Count <= Count8(TT); 
                   9: Count <= Count9(TT); 
                   10:Count <= Count10(TT); 
                   11:Count <= Count11(TT); 
                   12:Count <= Count12(TT); 
               endcase 
           end 
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//*************************************************************************\/ 
//*****  The 1's count function - Count10 for 12-variable functions   *****\/ 
function [12:0] Count12; 
   input [4095:0] TT; 
 
   begin: f12 
     Count12 = Count11(TT[4095:2048]) + Count11(TT[2047:0]); 
   end 
endfunction 
 
//*****  The 1's count function - Count12 for 12-variable functions   *****\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count11 for 11-variable functions   ******\/ 
function [11:0] Count11; 
 input [2047:0] TT; 
 
 begin: f11 
   Count11 = Count10(TT[2047:1024]) + Count10(TT[1023:0]); 
 end 
endfunction 
 
//******  The 1's count function - Count9 for 11-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//*****  The 1's count function - Count10 for 10-variable functions   *****\/ 
function [10:0] Count10; 
   input [1023:0] TT; 
 
   begin: f10 
     Count10 = Count9(TT[1023:512]) + Count9(TT[511:0]); 
   end 
endfunction 
 
//*****  The 1's count function - Count10 for 10-variable functions   *****\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
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//******  The 1's count function - Count9 for 9-variable functions   ******\/ 
function [9:0] Count9; 
 input [511:0] TT; 
 
 begin: f9 
   Count9 = Count8(TT[511:256]) + Count8(TT[255:0]); 
 end 
endfunction 
 
//******  The 1's count function - Count9 for 9-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count7 for 7-variable functions   ******\/ 
function [8:0] Count8; 
   input [255:0] TT; 
 
   begin: f8 
     Count8 = Count7(TT[255:128]) + Count7(TT[127:0]); 
   end 
endfunction 
 
//******  The 1's count function - Count7 for 7-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count7 for 7-variable functions   ******\/ 
function [7:0] Count7; 
 input [127:0] TT; 
 
 begin: f7 
   Count7 = Count6(TT[127:64]) + Count6(TT[63:0]); 
 end 
endfunction 
 
//******  The 1's count function - Count7 for 7-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count6 for 6-variable functions   ******\/ 
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function [6:0] Count6; 
   input [63:0] TT; 
 
   begin: f6 
     Count6 = Count5(TT[63:32]) + Count5(TT[31:0]); 
   end 
endfunction 
 
//******  The 1's count function - Count6 for 6-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count5 for 5-variable functions   ******\/ 
function [5:0] Count5; 
   input [31:0] TT; 
 
   begin: f5 
     Count5 = Count4(TT[31:16]) + Count4(TT[15:0]); 
   end 
endfunction 
 
//******  The 1's count function - Count5 for 5-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count4 for 4-variable functions   ******\/ 
function [4:0] Count4; 
   input [15:0] TT; 
 
   begin: f4 
     Count4 = Count3(TT[15:8]) + Count3(TT[7:0]); 
   end 
endfunction 
 
//*****   The 1's count function - Count4 for 4-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count3 for 3-variable functions   ******\/ 
function [3:0] Count3; 
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   input [7:0] TT; 
 
   begin: f3 
     Count3 = Count2(TT[7:4]) + Count2(TT[3:0]); 
   end 
endfunction 
 
//******  The 1's count function - Count3 for 3-variable functions   ******\/ 
//*************************************************************************\/ 
//*************************************************************************\/ 
//******  The 1's count function - Count2 for 2-variable functions   ******\/ 
function [2:0] Count2; 
        input [3:0] TT; 
 
   begin: f2 
     Count2[0]=TT[3]^TT[2]^TT[1]^TT[0]; 
     
Count2[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2]&TT[0]|TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0
]); 
     Count2[2]=TT[3]&TT[2]&TT[1]&TT[0]; 
   end 
endfunction 
 
//******  The 1's count function - Count2 for 2-variable functions   ******\/ 
//*************************************************************************\/ 
 
///////////////////////////////////   RESULTS ///////////////////////////////////// 
 
// n =               2         4        6       8        10 
// Freq.           149.9     96.7     73.7     47.6     38.7   
// #LUTs (%)       3(0%)    32(0%)    71(0%)  595(0%)  2296(3%) 
endmodule 
////////////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
////////////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
 



63 
 

 
////////////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
////////////////////////////////////////////////////////////////////////////////////////////////////////////
////// 
 
///////////////////////////////////   RESULTS ///////////////////////////////////// 
 
// n =               2         3           4                 5             6 
// 
//nonlinearity  -  over      all functions/rot. sym. func./symmetric func. 
//     0            8/4/4    16/4/4     32/ 4/ 4         64/ 4/ 4     ?/   4/   4 
//     1            8/4/4   128/8/8    512/ 8/ 8       2048/ 8/ 8     ?/   8/   8 
//     2            0/0/0   112/4/4   3840/ 8/ 4      31744/ 4/ 4     ?/   8/   4 
//     3            0/0/0     0/0/0  17920/ 8/ 0     317440/ 0/ 0     ?/  16/   0 
//     4            0/0/0     0/0/0  28000/12/ 4    2301440/ 0/ 0     ?/  20/   0 
//     5            0/0/0     0/0/0  14336/16/ 8   12888064/24/ 8     ?/  16/   0 
//     6            0/0/0     0/0/0    896/ 8/ 4   57996288/48/ 16    ?/  56/   8 
//     7            0/0/0     0/0/0      0/ 0/ 0  215414784/24/ 8     ?/  88/  16 
//     8            0/0/0     0/0/0      0/ 0/ 0  647666880/ 0/ 0     ?/  80/   8 
//     9            0/0/0     0/0/0      0/ 0/ 0 1362452480/ 0/ 0     ?/ 152/   0 
//    10            0/0/0     0/0/0      0/ 0/ 0 1412100096/36/ 4     ?/ 184/   0 
//    11            0/0/0     0/0/0      0/ 0/ 0  556408832/72/ 8     ?/ 144/   0 
//    12            0/0/0     0/0/0      0/ 0/ 0   27387136/36/ 4     ?/ 324/   4 
//    13            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 432/   8 
//    14            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 360/   4 
//    15            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 648/   8 
//    16            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 832/   8 
//    17            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 768/   0 
//    18            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1076/   0 
//    19            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1304/   0 
//    20            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1232/   0 
//    21            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1536/  16 
//    22            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1924/  16 
//    23            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/2232/   0 
//    24            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/1612/   0 
//    25            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 752/   0 
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//    26            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/ 432/   4 
//    27            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/  96/   8 
//    28            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/  48/   4 
//    29            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/   0/   0 
//    30            0/0/0     0/0/0      0/ 0/ 0          0/ 0/ 0     ?/   0/   0 
 
// Notes: 
//    1.  Values for ALL functions for n = 6 were not obtained, since this computation 
//             takes more than 5000 years at 100 MHz.. 
//    2.  Values for ROT. SYM. functions for n = 7 were not obtained because, after 
//             15 hours of compilation time, Synplify Pro issued an "Out-of-Memory" 
//             error message. 
//    3.  Values for SYMMETRIC functions for n = 7 were not obtained because, after 
//             15 hours of compilation time, Synplify Pro issued an "Out-of-Memory" 
//             error message 
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2. Circular Pipeline With Reservoir  

Modules identical to those in the circular pipeline with IFGs (code in section 1) are not replicated in this section. 

//-------------------------------------------------------------------------------------------- 
// MY_CIRC_Pipe.v  -  An interface between the circular pipeline w/reservoir code that sets up  
//    streaming with the SRC-6.  Based on the SRC example user_one_stream. 
// 
// Created:       August 20, 2010 
// Last Modified: September 3, 2010 
// Author:        Chris Johnson 
// 
// Notes:         DATA_OUT bus width is not parameterized; must be manually edited for n>5. 
//    modDATA_OUT must be edited for n>6. 
// 
// Sub-module calls: CircPipe.v 
// 
//-------------------------------------------------------------------------------------------- 
 
module MY_STREAM_TEST ( 
        CNT, 
        START, 
        CLK, 
        CLR, 
        DONE, 
        DATA_OUT, 
        VALID_OUT, 
        STALL_IN, 
        TERM_OUT 
        ); 
    input  [31:0] CNT; 
    input  START; 
    input  CLK  /*  synthesis syn_noclockbuf=1 syn_maxfan=100000  */; 
    input  CLR; 
    output DONE; 
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    output [31:0] DATA_OUT; 
    output VALID_OUT; 
    input  STALL_IN; 
    output TERM_OUT; 
 // output [N-n-1:0] COUNTER; 
 
    reg [31:0] DATA_OUT; 
    reg VALID_OUT; 
    reg TERM_OUT; 
    reg DONE; 
    reg [1:0] state; 
 
    parameter IDLE       = 0; 
    parameter ACTIVE     = 1; 
    parameter STALLED    = 2; 
    parameter FINISHING  = 3; 
 
wire     modDONE; 
wire [63:0]  modDATA_OUT; 
wire     modVALID_OUT; 
wire     modTERM_OUT; 
 
    always @*// (posedge CLK or posedge CLR) 
        if (CLR) begin 
            DATA_OUT  <= 0; 
            DONE      <= 0; 
            VALID_OUT <= 0; 
            TERM_OUT  <= 0; 
            state     <= 0; 
    //COUNTER  <= 0; 
            end 
        else 
            case (state) 
                IDLE:       if (START) begin 
                                DATA_OUT  <= 0; 
                                VALID_OUT <= 1; 
           // COUTNER <= 0; 
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                                state     <= ACTIVE; 
                                end 
 
                ACTIVE:         begin 

DATA_OUT <= modDATA_OUT; 
                                    DONE <= modDONE; 
                                    VALID_OUT <= modVALID_OUT; 
                                    TERM_OUT <= modDONE;   
          

if (STALL_IN) begin 
                                     VALID_OUT <= 0; 
                                     state     <= STALLED; 
                                    end 
                                end 
 
                STALLED:    if (~STALL_IN) begin 
                                VALID_OUT <= 1; 
                                state     <= ACTIVE; 
                                end 
 
                FINISHING:  begin 
                                //DONE  <= 0; 
                                state <= IDLE; 
                                end 
      default:; 
                endcase 
 
 
CircPipe u2(START,CLK,CLR,modDONE,modDATA_OUT,modVALID_OUT,STALL_IN,modTERM_OUT); 
 
endmodule 
 
 
 
//-------------------------------------------------------------------------------------------- 
// CircPipe.v  -  The circular pipeline with independent function generators top level module. 
// 
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// Created:       December 22, 2009 
// Author:  Jon T. Butler 
// Last Modified: September 3, 2010 
// Modified by:   Chris Johnson 
// 
// Notes:         Set parameter ‘n’ in this file.  It is passed to all sub-modules. 
// 
// Called by:  MY_CIRC_PIPE.v 
// 
// Sub-module calls:  countersMod.v 
//    Stage_TT.v 
// 
//  This implements the circular pipeline.  For n-variable functions, there are N = 2**n stages, 
//    one for each linear function (we need only compare against the linear functions, since a  
//    function that has a bent distance from all linear function, has a bent distance away from 
//    all affine functions.  In this realization, only one stage has a bent function output - to 
//    simplify the circuit.  In this way, the circular pipeline serves as a buffer.  In this 
//    case a bent function will go through from N to 2N-1 stages. 
// 
//-------------------------------------------------------------------------------------------- 
// 
module CircPipe #(parameter n=5, parameter N=2**n) 
     ( input     START, 
      input     CLK, 
      input     CLR, 
      output     done, 
      output [63:0]  BENT, 
      output     valid_out,   
      input     STALL_IN,     
      output reg    term_out 

); 
 
wire   [N-1:0]   LIN_FNC [N-1:0]; 
wire  [N-1:0]   REJECT;            // 0 bit indicates FNCS word not accepted.  
reg   temp; 
wire   INHIBIT;   // signal from the queue to pause counters 
wire  [N-1:0]  FNCS  [N-1:0];  // Each of the N words in counter FNCS has N bits. 
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wire [N*N-1:0] FNCS_1d;   //for connection to queue module 
wire [N*N-1:0] QUEUE;   //output of reservoir queue 
wire [n-1:0]   FNCShob [N-1:0];   //high order bits for the counter 
wire   [N-n-1:0]   counter;   //simple counter, extra bit to signal counter is done 
wire  [N-1:0]   to_stage; 
wire  [N-1:0]   stage_TT [N-1:0]; 
wire  [n+1:0]   no_passes [N-1:0]; 
 
genvar g; 
 
/////////////////////////////////////////////////////////////////////////////////////// 
 
////////////////FUNCTION GENERATOR//////////////////////////////////// 
//instantiate a single counter 
countersMod #(.n(n)) u4(START,CLK,CLR,STALL_IN,INHIBIT,counter,done); 
 
generate 
//Generate high order bits 
for (g=0; g<N; g=g+1) 
 begin: CounterHOB 
   assign FNCShob[g] = g; 
 end 
endgenerate 
//Generate function generators 
generate 
for (g=0; g<N; g=g+1) 
 begin: CounterConcat 
  assign FNCS[g] = {FNCShob[g],counter[N-n-1:0]}; 
 end 
endgenerate 
//Create 1-d version of function generators for i/o interface 
generate 
for (g=0; g<N; g=g+1) 
 begin: FNCS1d 
  assign FNCS_1d[g*N+N-1:g*N] = FNCS[g]; 
 end 
endgenerate 
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////////////////FUNCTION GENERATOR//////////////////////////////////// 
 
////////////LINEAR FUNCTIONS///////////////////////////////////////////// 
generate 
for (g=0; g<N; g=g+1) 
 begin: LinearGen 
  assign LIN_FNC[g] = Linear(g); 
 end 
endgenerate 
 
function [N-1:0] Linear(input [n-1:0] Y); 
 integer j; 
 integer k; 
 reg [n-1:0] X; 
  begin 
   for (j=0; j<N; j=j+1)  
    begin 
     X = j; 
     temp=0; 
     for (k=0; k<n; k=k+1) 
      begin 
      temp = temp ^ (X[k] & Y[k]); 
      end 
     Linear[N-1-X] = temp; 
    end 
  end 
endfunction 
////////////LINEAR FUNCTIONS///////////////////////////////////////////// 
 
 
////////////RESERVOR/QUEUE/////////////////////////////////////////////// 
CircPipeQue #(.n(n)) QueModule(CLK, FNCS_1d, REJECT, INHIBIT, QUEUE); 
////////////RESERVOR/QUEUE/////////////////////////////////////////////// 
 
////////////STAGES/////////////////////////////////////////////////////// 
generate   
for (g = 0; g<N; g=g+1) 
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 begin: Stages 
  if(g != 0) begin 
   stage #(.n(n)) u2(CLK, QUEUE[g*N+N-1:g*N], /*VALID_IN[g],*/ REJECT[g], to_stage[g-1], 
to_stage[g], stage_TT[g-1], LIN_FNC[g], stage_TT[g], no_passes[g-1], no_passes[g]); 
   end 
  if(g == 0) begin  
   stage1 #(.n(n)) u3(CLK, QUEUE[N-1:0], /*VALID_IN[0],*/ REJECT[0], to_stage[N-1], 
to_stage[0], stage_TT[N-1], LIN_FNC[0], stage_TT[0], no_passes[N-1], no_passes[0], BENT, valid_out); 
   end 
 end 
endgenerate 
////////////STAGES/////////////////////////////////////////////////////// 
 
endmodule 
 
 
//-------------------------------------------------------------------------------------------- 
// CircPipeQue.v  -  Reservoir and queue for circular pipeline. 
// 
// Created:       March 30, 2010 
// Author:  Chris Johnson 
// Last Modified: September 3, 2010 
// 
// Notes:         None 
// 
// Called by:  CircPipe.v 
// 
// Sub-module calls:  pri_enc.v 
//    thermo_adder.v 
// 
//-------------------------------------------------------------------------------------------- 
// 
module CircPipeQue #(parameter n=3, parameter N=2**n)  
 ( input    CLK, 
  input  [N*N-1:0] gen_1, 
  input  [N-1:0] reject, 
  output   inFromRes, //stall function generator 
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  output reg [N*N-1:0] queue 
); 

 
localparam SHAMT_WIDTH = n+1; //number of bits for shamt. n is enough to hold the max transfer distance 
 
wire [N-1:0]  inToPipe; 
reg [N-1:0]  in   [N-1:0]; //Output of MUX that selects candidates for pipeline 
wire [N*N-1:0]   in_1;    // 1-d version of in 
reg [N-1:0]   res   [2*N-2:0];  //extra reg for pipelining 
wire [N*(2*N-1)-1:0] reswire; 
reg [SHAMT_WIDTH:0]  shamt  [N:0]; //shift amount using to route TT's into "res" 
wire [3*2**(2*n-1)-2**(n-1)-2:0]  shamt_sel; //translate shamt into sel lines for use in pri_enc 
        //vector width is equivalent to sum(2^n,2^(n+1)-1) 
wire [N-1:0]   out   [2*N-2:0]; 
reg [N-1:0]   gen   [N-1:0];  //2-D version of Func Gen inputs 
reg [2*N-2:0]   occ;  //occupied marker bits, one for each reservoir and "in" function 
wire [n-1:0]   thermoSum; 
reg [N-2:0]   thermo_occ; //occupied bits routed to thermoSum (either middle or lower 3 occ bits) 
 
genvar i, j; 
 
//Transform Func Gen's TT's to 2-D arrays 
generate 
for(i=0; i<N; i=i+1) 
 begin: multidim 
  always@*//(posedge CLK)//Pipeline function generator 
   begin 
            gen[i] <= gen_1[N*i+N-1:N*i]; 
   end 
    end     
endgenerate 
 
always@*  //MUX to select which source of functions to provide to CircPipe 
 if(inFromRes) 
  queue <= reswire[N*N-1:0]; 
 else 
  queue <= gen_1; 
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//to output to the testbench 
generate 
for(i=0; i < 2*N-1; i=i+1) 
 begin: ReswireOutput 
  assign reswire[i*N+N-1:N*i] = res[i]; 
 end 
endgenerate 
 
//*************************************************************************************** 
//Create select lines from shamt 
generate 
for(i=0; i<N; i=i+1) 
 begin: in1D 
  assign in_1[i*N+N-1:i*N] = in[i]; 
 end 
endgenerate  
 
generate 
 for(i=0; i<2*N-2; i=i+1) 
 begin: shamt_sel_gen 
  if(i<N) 
  begin 
   for(j=0; j<N; j=j+1) 
   begin: sham_sel_gen_inner1  
    assign shamt_sel[i*N+j] = (shamt[N-j]==i && !inToPipe[j]) ? 1'b1 : 1'b0; 
   end  
  end 
   
  else// if(i<2*N-2) 
  begin 
   for(j=0; j<2*N-1-i; j=j+1) 
   begin: shamt_sel_gen_inner2 
    assign shamt_sel[shamt_idx(i)+j] = (shamt[2*N-i-1-j]==i && !inToPipe[j+i-N+1]) ? 
1'b1 : 1'b0; 
   end  
  end  
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 end 
endgenerate  
//*************************************************************************************** 
//SECTION ONE: INPUT CONTROL AND RESERVOIR 
////////////////////////////////////////// 
assign inFromRes = occ[N-1]; 
 
//Select input from either func gen or reservoir 
generate 
for(i=0; i<N; i=i+1) 
    begin: incoming 
        always@*//(inFromRes, res[i], gen[i]) 
        begin: A 
            in[i] <= inFromRes ? res[i] : gen[i]; 
        end 
    end 
endgenerate 
 
//Calculate shamt from reservoir 
always@* thermo_occ <= inFromRes ? occ[2*N-2:N] : occ[N-2:0]; 
thermo_adder #(n) thermo(thermo_occ,thermoSum); 
always@* shamt[N] <= thermoSum; 
 
//Calculate shamt for each incoming function T from the MUX 
generate 
for(i=0; i<N; i=i+1) 
    begin:shiftCalc 
        always@*//(shamt[i+1], inToPipe[N-1-i]) 
        begin: shamt_setup 
            shamt[i] = shamt[i+1] + !inToPipe[N-1-i]; 
        end 
    end 
endgenerate 
 
//set occ bits based on res contents 
generate 
for(i=0; i<2*N-1; i=i+1) 
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    begin: occ_connect 
        always@* 
    if(res[i]) occ[i] <= 1'b1; 
    else occ[i] <= 1'b0; 
    end     
endgenerate 
 
//Assign to resTemp (wires to the reservoir registers) the proper input, based on xfer table & inToPipe 
//  Accomplished through use of priority encoders 
generate 
 for(i=0; i<2*N-2; i=i+1) 
 begin: Cases 
  if(i<N) 
  begin  
   pri_enc #(.n(n),.s(N)) pi_1(in_1,shamt_sel[i*N+N-2:i*N],inToPipe[N-1:0],out[i]);   //for i 
>= N, pri_enc doesn't need entire 'in_1', so pruning will occur, shamt's are each 5 bits 
  end   
  else//(i<2*N-2) 
  begin 
   pri_enc #(.n(n),.s(2*N-1-i)) pi_2(in_1[N*N-1:(i-N+1)*N],shamt_sel[shamt_idx(i+1)-
1:shamt_idx(i)],inToPipe[N-1:i+1-N],out[i]); //parring should occur 
  end  
 end 
endgenerate   
 
//Constant function to generate indicies of shamt_1 in the generate elseif(i<2*N-2) section of pri_enc calls 
function integer shamt_idx(input integer index); 
 integer k; 
 integer j; 
 integer test; //added for XST 
  begin 
     k=1; 
   shamt_idx=N*N; 
   for(j=index; N<j; j=j-1) 
   begin 
    shamt_idx = shamt_idx + N - k; 
    k=k+1; 
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   end  
  end 
endfunction  
/* 
generate 
 for(i=0; i<2*N-1; i=i+1) 
 begin: Pipe1res 
  always@(posedge CLK) 
   res[i] <= res_0p[i]; 
 end 
endgenerate 
*/ 
 
generate 
 for(i=0; i<2*N-1; i=i+1) 
 begin: reservoir 
   if(i<N-1) begin 
    always@(posedge CLK) res[i]/*res_0p[i]*/ = low_res(inFromRes,shamt_sel[i*N+N-
1:i*N],shamt[i],out[i],res[N+i],res[i]); 
    end 
   else if (i==N-1) begin 
    always@(posedge CLK) res[i]/*res_0p[i]*/ = low_res(inFromRes,shamt_sel[i*N+N-
1:i*N],shamt[i],out[i],{N{1'b0}},res[i]); 
    end 
   else if (i<2*N-2)begin //(N-1 < i < 2*N-2) 
    always@(posedge CLK) res[i]/*res_0p[i]*/ = mid_res(inFromRes,{i-
N+1{shamt_sel[shamt_idx(i+1)-1:shamt_idx(i)]}},out[i],res[i]); 
    end 
   else begin//i==2*N-2 
    always@(posedge CLK) res[i]/*res_0p[2*N-2]*/ = if_func_Nbit(in[N-1],inToPipe[N-
1],inFromRes,shamt[1],res[2*N-2]);//probably don't need this, just control occ bit and always assign in[N-1] 
to reswire [N-1] 
    end 
 end 
endgenerate 
 
function [N-1:0] low_res ( input inFromRes, 
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     input [N-1:0] sel, 
     input [N-1:0] shamt_i, //may not be needed if out is already zeros 
     input [N-1:0] out, 
     input [N-1:0] mid_res, 
     input [N-1:0] res 

); 
 begin 
  if(inFromRes && mid_res) begin //slide middle registers down 
   low_res = mid_res; 
  end   
  else if(sel && out) begin  //if sel and outwite are not zero  
   low_res = out; 
  end 
  else low_res = inFromRes ? {N{1'b0}} : res; 
 end 
endfunction 
 
function [N-1:0] mid_res ( input inFromRes, 
     input [N-1:0] sel, //couldn't figure out how to taper this width 
     //input [N-1:0] shamt_i, 
     input [N-1:0] out, 
     input [N-1:0] res); 
 begin  
  if(sel && out) begin //if sel and outwite are not zero  
   mid_res = out;  
  end 
  else mid_res = {N{1'b0}}; 
 end 
endfunction 
 
//This is a NOT-IF 
function [N-1:0] if_func_Nbit( input [N-1:0] in,  
      input inToPipe, 
      input inFromRes, 
      input [SHAMT_WIDTH:0] shamt_i, 
      input prior_value 

); 
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 begin 
  if((3>=shamt_i) && inFromRes) 
  begin 
   if_func_Nbit = {N{1'b0}};     
  end   
  else if((shamt_i==2*N-2) && !inToPipe) 
  begin 
   if_func_Nbit = in; 
  end 
  else 
   if_func_Nbit = prior_value; 
 end 
endfunction  
endmodule 
 
 
module pri_enc #(parameter n=2,s=4) (in, sel, inToPipe, out); 
//-------------------------------------------------------------------------------------------- 
// pri_enc - Verilog code to implement a priority encoder depending on a parameters, n and m. 
//                     
// 
// Created:       March 15, 2010 
// Last Modified: July 21, 2010 
// Author:        Chris Johnson 
//   Adapted from J.T. Butler's 1-bit priority encoder, modified for  
//    for busses and select lines in the Circular Pipeline Reservoir. 
// 
// Notes:          None. 
// 
// Called by:  CircPipeQue.v 
// 
// Sub-module calls:  sel_module.v 
//    iff.v 
//  
//-------------------------------------------------------------------------------------------- 
parameter N = 2**n; 
//s is number of TT's being input (all MUX's get one TT, except the last one generated gets 2) 
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localparam SHAMT_WIDTH = n+1; //number of bits for shamt. n is large enough to hold the max transfer 
distance 
 
input  [s*N-1:0]  in;         // in has up to N*N bits; all the applicable incoming functions 
input  [s-2:0] sel;        // sel determines which OUT. Up to N-1 bits. 
input  [s-1:0] inToPipe; // signal indicating slot in circ pipe is vacant 
output [N-1:0]    out ;       // OUT is main output of circuit. 
 
wire   [s*N-1:0]  inC; 
wire   [(INNER_S(s)-3)*N+N-1:0]      inner;        // inner  is a line interconnecting 
 
genvar i; 
 
//Constant function to provide INNER_S index 
function integer INNER_S(input integer s); 
 begin 
  if(s>2) 
   INNER_S = s; 
  else 
   INNER_S = 3; 
 end 
endfunction 
 
 
//Bring TT in if it's rejected from the circular pipeline, else don't bring it in. 
generate 
 for(i=0; i<s; i=i+1) 
  begin: ifinToPipe 
   iff #(.N(N)) u5 (in[i*N+N-1:i*N],inToPipe[i],inC[i*N+N-1:i*N]); 
  end 
endgenerate    
 
//    Within the generate for loop below, if statements handle (3) special interconnection 
//            requirements, beginning, end, and middle.   
generate 
 for (i=0; i<s-1; i=i+1) 
     begin:stage 
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     if (s == 2)  
      assign inner[N-1:0] = inC[s*N-1:s*N-N]; 
   if (i == 0) 
    sel_module #(.N(N)) u1  (inner[N-1:0],  inC[N-1:0],     
 sel[i],   out); 
   else if (i == (s-2)) 
    sel_module #(.N(N)) u2  (inC[s*N-1:s*N-N], inC[s*N-N-1:s*N-2*N], sel[s-2], 
inner[(i-1)*N+N-1:(i-1)*N]); //in case of s=2, input 2 (inC) is repeated from MUX_0 
   else 
    sel_module #(.N(N)) u3  (inner[i*N+N-1:i*N], inC[i*N+N-1:i*N],   sel[i],   
inner[(i-1)*N+N-1:(i-1)*N]); 
  end 
endgenerate 
 
endmodule  
 
 
//-------------------------------------------------------------------------------------------- 
// sel_module – Selector module. Basically, a MUX. 
//                     
// 
// Created:       March 30, 2010 
// Last Modified: July 21, 2010 
// Author:        Chris Johnson 
// 
// 
// Notes:          None. 
// 
// Called by:  pri_enc.v 
// 
// Sub-module calls:  None. 
//  
//-------------------------------------------------------------------------------------------- 
// 
module sel_module #(parameter N=4) (sel_0, sel_1, sel, out); 
 
input    [N-1:0] sel_0; 
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input    [N-1:0] sel_1; 
input      sel; 
output   [N-1:0] out; 
reg      [N-1:0] out; 
 
always @* 
 begin 
  if (sel == 1) out <= sel_1; 
  else out <= sel_0; 
 end  
endmodule 
 
//-------------------------------------------------------------------------------------------- 
// iff – Simply and if statement, used for calls within a generate statement                  
// 
// Created:       March 30, 2010 
// Last Modified: July 21, 2010 
// Author:        Chris Johnson 
// 
// 
// Notes:          None. 
// 
// Called by:  iff.v 
// 
// Sub-module calls:  None. 
//  
//-------------------------------------------------------------------------------------------- 
// 
module iff #(parameter N=4) (in,inToPipe,out); 
 
input  [N-1:0]   in; 
input      inToPipe; 
output  [N-1:0]  out; 
 
reg  [N-1:0]  out; 
 
always@* 
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begin 
 if(!inToPipe) 
  out <= in; 
 else 
  out <= {N{1'b0}};  
end 
  
endmodule 
 
 
module thermo_adder #(parameter n = 2) (occup, sum); 
//-------------------------------------------------------------------------------------------- 
// thermo_adder  -  Verilog code to compute the sum of a 2^n bit input, occupp. 
//                    occupp is the set of bits from the stages in the reservoir 
//                    that indicate whether the stage is occuppied (1) or not (0). 
//                    The bits from occupp is a thermometer.  So, if occupp(i) = 1, 
//                    then occupp(j) = 1 for all j < i.  This results in a simpler 
//                    circuit. 
// 
// Created:       January 31, 2010 
// Last Modified: 21 July 2010 
// Author:        Jon T. Butler 
// Modified: Chris Johnson 
// 
// Called by:  CircPipeQue.v 
// 
// Sub-module calls:  None. 
//  
//-------------------------------------------------------------------------------------------- 
// 
 
localparam N = 2**n; 
 
input  [N-2:0]     occup;        // occupp has 2^n bits. 
output reg [n-1:0]      sum;          //   sum is an n-bit number indicating how many input bits are 1. 
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integer index, g; 
                         
always @* 
 if(occup[N-2] == 1'b1) 
  sum[n-1:0] = {{n{1'b1}}}; 
 else 
  begin 
   sum[n-1] = 1'b0;  
   index = 2**(n-1)-1;     
      for (g=n-1; g>=0; g = g-1) 
          begin 
           if(occup[index] == 1'b1) 
            begin 
             sum[g] = 1; 
             index = index + 2**(g-1); 
            end 
           else 
            begin 
             sum[g] = 0; 
             index = index - 2**(g-1); 
            end 
          end         
        end 
  
endmodule 
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B. SRC-6 IMPLEMENTATION FILES 

1. main.c 

///////////////////////////////////////////////////////////////////////////// 
/*                                                                         */ 
/*  main.c  -    C program to test an SRC-6E implementation of min.v       */ 
/*                                                                         */ 
/*       Author:         Chris Johnson                                     */ 
/*       Created:        August 1, 2010                                    */ 
/*       Last modified:  September 3, 2010                                 */ 
/*                                                                         */ 
/*       Description:  This program searches for bent functions using the  */ 
/*                      circular pipeline with IFGs                        */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
#include <map.h> 
#include <stdlib.h> 
#include <string.h> 
 
void subr (int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int64_t*, int8_t*, int64_t*, int); 
 
int main () { 
 
        int i,j,mapnum=0; 
        int64_t time_clk, r1, r2, cmin[32], invalc; 
        int64_t *in0, *in1, *in2, *in3, *BENT, *REJECT, *STAGE_TT_out; 
        int8_t *valid_out; 
 
 
/* Allocate array of x values, in, and array of function values, out      */ 
    in0  = (int64_t *) malloc (4096* sizeof (int64_t)); 
    in1  = (int64_t *) malloc (4096* sizeof (int64_t)); 
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    in2  = (int64_t *) malloc (4096* sizeof (int64_t)); 
    in3  = (int64_t *) malloc (4096* sizeof (int64_t)); 
    BENT = (int64_t *) malloc (4096* sizeof (int64_t)); 
    STAGE_TT_out = (int64_t *) malloc (4096* sizeof (int64_t)); 
 
        for (i = 0; i < 4096; i++){ 
                in0[i] = 12816;//3210 
                in1[i] = 30292;//7654 
                in2[i] = 47768;//AB98 
                in3[i] = 65244;//FEDC 
                out[i] = 0; 
                } 
 
    map_allocate (1); 
 
//  Call subroutine subr.mc on the MAP. 
    subr (in0, in1, in2, in3, &time_clk, REJECT, BENT, valid_out, STAGE_TT_out, mapnum); 
 
/*  Print out the number of clocks.                                        */ 
    printf ("%lld clocks\n", time_clk); 
 
/*  Print out the output.                                               */ 
        for (i=0; i<4096; i++){ 
                printf("BENT: %x \n",BENT[i]); 
                if(out[i]) 
                printf("PartialStageTT: %x \n",out[i]); 
        } 
 
    map_free (1); 
 
    exit(0); 
 
    } 
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2. subr.mc 

/***************************************************************************/ 
/*                                                                         */ 
/*  subr.mc  - MAP C subroutine to cue TT's for ciruclear pipeline.        */ 
/*                                                                         */ 
/*       Author:         Chris Johnson                                     */ 
/*       Created:        June 14, 2010                                     */ 
/*       Last modified:  September 3, 2010                                     */ 
/*                                                                         */ 
/*       Description:  This program calls an SRC-6 macro that seives       */ 
/*         functions through a circular pipeline.                          */ 
/*                                                                         */ 
/*                                                                         */ 
/*                                                                         */ 
/***************************************************************************/ 
 
#include <libmap.h> 
 
void subr (int64_t in0[], int64_t in1[], int64_t in2[], int64_t in3[], int64_t *time, int64_t reject[], 
int64_t bent[], int8_t valid_out, int64_t tt[], int mapnum) { 
 
// Declare one OBM banks in SRC-6 to store...  
         OBM_BANK_A (IN0, int64_t, 1024)  
         OBM_BANK_B (BENT_o, int64_t, 4096) 
  OBM_BANK_C (IN1, int64_t, 1024) 
  OBM_BANK_D (IN2, int64_t, 1024) 
  OBM_BANK_E (IN3, int64_t, 1024) 
  OBM_BANK_F (TT_o, int64_t, 4096) 
 
        int64_t my64bit_in0, my64bit_in1, my64bit_in2, my64bit_in3, REJECT, BENT, stage_TT_out, t0, t1; 
        int8_t VALID_OUT;  //only need 1 bit 
        int i;  
 
// Get values by DMAing FROM the CPU 
      DMA_CPU (CM2OBM, IN0, MAP_OBM_stripe(1,"A"), in0, 1, 1024*sizeof(int64_t), 0); 
 DMA_CPU (CM2OBM, IN1, MAP_OBM_stripe(1,"C"), in1, 1, 1024*sizeof(int64_t), 0); 
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 DMA_CPU (CM2OBM, IN2, MAP_OBM_stripe(1,"D"), in2, 1, 1024*sizeof(int64_t), 0); 
 DMA_CPU (CM2OBM, IN3, MAP_OBM_stripe(1,"E"), in3, 1, 1024*sizeof(int64_t), 0); 
        wait_DMA (0); 
 
        read_timer(&t0); 
 
        for (i = 0; i < 1024; i++){ 
// The my_operator macro call has 2 inputs, IN and INTOPIPE, and one output, OUT 
             my64bit_in0 = IN0[i]; 
             my64bit_in1 = IN1[i]; 
             my64bit_in2 = IN2[i]; 
             my64bit_in3 = IN3[i]; 
             my_operator (my64bit_in0, my64bit_in1, my64bit_in2, my64bit_in3, REJECT, BENT, VALID_OUT, 
stage_TT_out);                
      BENT_o[i] = BENT; 
      TT_o[i] = stage_TT_out; 
        } 
 
        read_timer(&t1); 
 
        *time = (t1 - t0); 
 
 
// Return values by DMAing TO the CPU 
        DMA_CPU (OBM2CM, BENT_o, MAP_OBM_stripe(1,"B"), bent, 1, 4096*sizeof(int64_t), 0); 
 DMA_CPU (OBM2CM, TT_o, MAP_OBM_stripe(1,"F"), tt, 1, 4096*sizeof(int64_t), 0); 
        wait_DMA (0); 
} 

 

3. makefile 

# $Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $ 
# 
# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 
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# 
#       Manufactured in the United States of America. 
# 
# SRC Computers, Inc. 
# 4240 N Nevada Avenue 
# Colorado Springs, CO 80907 
# (v) (719) 262-0213 
# (f) (719) 262-0223 
# 
# No permission has been granted to distribute this software 
# without the express permission of SRC Computers, Inc. 
# 
# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 
# 
# ----------------------------------- 
 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES           = main.c 
 
MAPFILES        = subr.mc 
 
BIN             = main 
 
# ---------------------------------- 
# Multi chip info provided here 
# (Leave commented out if not used) 
# ---------------------------------- 
#PRIMARY        = <primary file 1>   <primary file 2> 
 
#SECONDARY      = <secondary file 1> <secondary file 2> 
 
#CHIP2          = <file to compile to user chip 2> 
 
#----------------------------------- 
# User defined directory of code routines 
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# that are to be inlined 
#------------------------------------ 
 
#INLINEDIR      = 
 
# ----------------------------------- 
# User defined macros info supplied here 
# 
# (Leave commented out if not used) 
# ----------------------------------- 
MACROS          = my_macro/CircPipe.v 
MY_BLKBOX       = my_macro/blk.v 
MY_NGO_DIR      = my_macro 
MY_INFO         = my_macro/info 
# ----------------------------------- 
# Floating point macros selection 
# ----------------------------------- 
 
#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 
#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 
                              # special rounding mode 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
 
MCCFLAGS     = -v 
MFTNFLAGS    = -v 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC              = gcc   # gcc   for Intel cc for Gnu 
FC              = ifort # ifort for Intel f77 for Gnu 
#LD             = ifort -nofor_main # for mixed C and Fortran, main in C 
#LD             = ifort # for Fortran or C/Fortran mixed, main in Fortran 
LD              = gcc   # for C codes 
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MY_CFLAGS       = 
MY_FFLAGS       = 
MY_LDFLAGS      =       # Flags to include libs if needed 
# ----------------------------------- 
# VCS simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEVCS         = yes   # YES or yes to use vcs instead of vcsi 
#VCSDUMP        = yes   # YES or yes to generate vcd+ trace dump 
# ----------------------------------- 
# MODELSIM simulation settings 
# (Set as needed, otherwise just leave commented out) 
# ----------------------------------- 
 
#USEMDL         = yes   # YES or yes to use modelsim instead of vcs/vcsi 
#USEMDLGUI      = yes   # YES or yes to use modelsim GUI interface 
#MDLDUMP        = yes   # YES or yes to generate vcd trace dump 
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 

 

4. info 

//***************************************************************************/ 
//*                                                                         */ 
//*  info - info file to specify the input and output of macro CircPipeCue  */ 
//*                                                                         */ 
//*       Author:         Chris Johnson                                     */ 
//*       Created:        August 2, 2010                                    */ 
//*       Last modified:  September 3, 2010                                    */ 
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//*                                                                         */ 
//***************************************************************************/ 
 
BEGIN_DEF "my_operator"       //Name used in .mc file to call macro. 
        MACRO = "CircPipe";   //Macro name. 
        STATEFUL = NO; 
        EXTERNAL = NO; 
        PIPELINED = YES; 
        LATENCY = 0; 
 
        INPUTS = 4: 
           I0 = INT 64 BITS     (FNCS0[64:0]) 
           I1 = INT 64 BITS     (FNCS1[64:0]) 
           I2 = INT 64 BITS     (FNCS2[64:0]) 
           I3 = INT 64 BITS     (FNCS3[64:0]) 
           ; 
 
        OUTPUTS = 4: 
    O0 = INT 64 BITS     (REJECT[63:0]) 
    O1 = INT 64 BITS     (BENT[63:0]) 
    O2 = INT 8  BITS     (valid_out[7:0]) //only need 1 bit  
           O3 = INT 64 BITS     (STAGE_TT_out[63:0]) 
 
           ; 
 
        IN_SIGNAL: 1 BITS "CLK" = "CLOCK"; 
END_DEF 

 

5. blk.v 

/***************************************************************************/ 
/*                                                                         */ 
/*  blk.v - black-box file that specifies input and output                 */ 
/*                                                                         */ 
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/*       Author:         Chris Johnson                                     */ 
/*       Created:        August 1, 2010                                    */ 
/*       Last modified:  September 3, 2010                                    */ 
/*                                                                         */ 
/***************************************************************************/ 
 
module CircPipe (CLK,FNCS0,FNCS1,FNCS2,FNCS3,REJECT,BENT,valid_out,STAGE_TT_out); 
 input CLK; 
 input  [63:0] FNCS0; 
 input  [63:0] FNCS1; 
 input  [63:0] FNCS2; 
 input  [63:0] FNCS3; 
 output [63:0] REJECT; 
 output [7:0] valid_out;   
 output [63:0]   stage_TT_out; 
 output [63:0] BENT; 
endmodule
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